論文の概要: AI-based Optimal scheduling of Renewable AC Microgrids with
bidirectional LSTM-Based Wind Power Forecasting
- arxiv url: http://arxiv.org/abs/2208.04156v2
- Date: Tue, 9 Aug 2022 01:22:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-14 18:22:54.574674
- Title: AI-based Optimal scheduling of Renewable AC Microgrids with
bidirectional LSTM-Based Wind Power Forecasting
- Title(参考訳): 双方向LSTM風力予測を用いた再生可能な交流マイクログリッドのAIに基づく最適スケジューリング
- Authors: Hossein Mohammadi, Shiva Jokar, Mojtaba Mohammadi, Abdollah
Kavousifard, Morteza Dabbaghjamanesh
- Abstract要約: 本稿では, エネルギー貯蔵装置, 風力タービン, マイクロタービンを考慮したマイクログリッドの最適スケジューリング手法を提案する。
短期風力予測問題に対処するために,双方向長期記憶に基づくディープラーニングモデルを提案する。
その結果,マイクログリッドの最適スケジューリングにおいて,提案手法の有効性と効率性を示した。
- 参考スコア(独自算出の注目度): 5.039813366558306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In terms of the operation of microgrids, optimal scheduling is a vital issue
that must be taken into account. In this regard, this paper proposes an
effective framework for optimal scheduling of renewable microgrids considering
energy storage devices, wind turbines, micro turbines. Due to the nonlinearity
and complexity of operation problems in microgrids, it is vital to use an
accurate and robust optimization technique to efficiently solve this problem.
To this end, in the proposed framework, the teacher learning-based optimization
is utilized to efficiently solve the scheduling problem in the system.
Moreover, a deep learning model based on bidirectional long short-term memory
is proposed to address the short-term wind power forecasting problem. The
feasibility and performance of the proposed framework as well as the effect of
wind power forecasting on the operation efficiency are examined using IEEE
33-bus test system. Also, the Australian Wool north wind site data is utilized
as a real-world dataset to evaluate the performance of the forecasting model.
Results show the effective and efficient performance of the proposed framework
in the optimal scheduling of microgrids.
- Abstract(参考訳): マイクログリッドの運用に関して、最適なスケジューリングは考慮すべき重要な問題である。
本稿では, エネルギー貯蔵装置, 風力タービン, マイクロタービンを考慮した再生可能マイクログリッドの最適スケジューリング手法を提案する。
マイクログリッドにおける操作問題の非線形性と複雑さのため,高精度で堅牢な最適化手法を用いることが不可欠である。
この目的のために,提案フレームワークでは,教師の学習に基づく最適化を利用してスケジューリング問題を効率的に解く。
さらに, 短期風力予測問題に対処するために, 双方向長期記憶に基づくディープラーニングモデルを提案する。
IEEE 33-busテストシステムを用いて,提案手法の有効性と性能,および風力予測が運転効率に及ぼす影響について検討した。
また、オーストラリアのウール北風観測所データを実世界のデータセットとして利用して予測モデルの性能を評価する。
その結果,マイクログリッドの最適スケジューリングにおいて,提案手法の有効性と効率性を示した。
関連論文リスト
- Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
大規模言語モデル (LLM) に基づくマルチエージェントシステム (MAS) は協調的問題解決において顕著な可能性を示している。
通信効率の低下、スケーラビリティの低下、効果的なパラメータ更新方法の欠如などです。
本稿では,コミュニケーション効率とタスク効率を両立させ,これらの課題に対処する新しいフレームワークOptimaを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:00:06Z) - Energy-Efficient Scheduling with Predictions [4.662349748983561]
エネルギー効率のスケジューリングにおいて、オペレーティングシステムは、マシンがジョブを処理する速度を制御する。
学習強化アルゴリズムの最近の研究は、予測を利用して性能保証を改善することを目的としている。
所望のエネルギー効率スケジューリング問題に対して、オフラインとオンラインのアルゴリズムを入力として、フレキシブルな学習強化アルゴリズムフレームワークを提供する。
論文 参考訳(メタデータ) (2024-02-27T02:13:32Z) - Balancing Energy Efficiency and Distributional Robustness in
Over-the-Air Federated Learning [40.96977338485749]
本稿では,空気計算(AirComp)を用いた分布型頑健な連邦学習(FL)におけるエネルギー効率を保証する新しい手法を提案する。
本稿では,エネルギー効率に配慮した決定論的手法と,分散ロバスト性に配慮した確率論的手法の2つの相補的な洞察を統合する新しいクライアント選択手法を提案する。
シミュレーションの結果,提案アルゴリズムの有効性を実証し,ロバスト性およびエネルギー効率の両面から,ベースラインよりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-12-22T12:15:52Z) - TranDRL: A Transformer-Driven Deep Reinforcement Learning Enabled Prescriptive Maintenance Framework [58.474610046294856]
産業システムは、運用効率を高め、ダウンタイムを減らすための信頼性の高い予測保守戦略を要求する。
本稿では,Transformerモデルに基づくニューラルネットワークと深部強化学習(DRL)アルゴリズムの機能を活用し,システムの保守動作を最適化する統合フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T02:27:54Z) - Multiagent Reinforcement Learning with an Attention Mechanism for
Improving Energy Efficiency in LoRa Networks [52.96907334080273]
ネットワーク規模が大きくなるにつれて、パケット衝突によるLoRaネットワークのエネルギー効率は急激に低下する。
マルチエージェント強化学習(MALoRa)に基づく伝送パラメータ割り当てアルゴリズムを提案する。
シミュレーションの結果,MALoRaはベースラインアルゴリズムと比較してシステムEEを著しく改善することがわかった。
論文 参考訳(メタデータ) (2023-09-16T11:37:23Z) - Short-Term Load Forecasting Using A Particle-Swarm Optimized Multi-Head
Attention-Augmented CNN-LSTM Network [0.0]
電力系統の効率的な運用と計画において、短期負荷予測が最重要となる。
ディープラーニングの最近の進歩は、この問題に対処する上で有望であることを示している。
これらの障害を克服する新しいソリューションを提案します。
論文 参考訳(メタデータ) (2023-09-07T13:06:52Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
本稿では,高信頼領域を適応的にフィルタするBALLETというフレームワークを提案する。
理論的には、BALLETは探索空間を効率的に縮小することができ、標準BOよりも厳密な後悔を示すことができる。
論文 参考訳(メタデータ) (2023-07-25T09:45:47Z) - Renewable energy management in smart home environment via forecast
embedded scheduling based on Recurrent Trend Predictive Neural Network [0.0]
本稿では,Recurrent Trends Predictive Neural Network based Forecast Embedded Scheduling (rTPNN-FES)と呼ばれるMLアルゴリズムを提案する。
rTPNN-FESは、再生可能エネルギーの発生と家電のスケジュールを同時に予測する新しいニューラルネットワークアーキテクチャである。
組込み構造により、rTPNN-FESは予測とスケジューリングのための別々のアルゴリズムの使用を排除し、予測エラーに対して堅牢なスケジュールを生成する。
論文 参考訳(メタデータ) (2023-07-04T10:18:16Z) - Movement Penalized Bayesian Optimization with Application to Wind Energy
Systems [84.7485307269572]
文脈ベイズ最適化(CBO)は、与えられた側情報を逐次決定する強力なフレームワークである。
この設定では、学習者は各ラウンドでコンテキスト(天気条件など)を受け取り、アクション(タービンパラメータなど)を選択する必要がある。
標準的なアルゴリズムは、すべてのラウンドで意思決定を切り替えるコストを前提としませんが、多くの実用的なアプリケーションでは、このような変更に関連するコストが最小化されるべきです。
論文 参考訳(メタデータ) (2022-10-14T20:19:32Z) - Automated Few-Shot Time Series Forecasting based on Bi-level Programming [5.760976250387322]
本稿では,バイレベルプログラミングの観点から,数発の学習パイプラインの最適設計を自動化するBiLO-Auto-TSF/MLフレームワークを開発する。
提案したBiLO-Auto-TSF/MLフレームワークの有効性を総合的に検証した。
論文 参考訳(メタデータ) (2022-03-07T12:15:14Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
本稿では,予測効率とトレーニング効率の両面において,モデルを協調最適化するための統一ベイズ最適化フレームワークを提案する。
レコメンデーションタスクのためのモデル選択の実験は、この方法で選択されたモデルがモデルのトレーニング効率を大幅に改善することを示している。
論文 参考訳(メタデータ) (2020-08-02T02:56:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。