論文の概要: Balancing Energy Efficiency and Distributional Robustness in
Over-the-Air Federated Learning
- arxiv url: http://arxiv.org/abs/2312.14638v1
- Date: Fri, 22 Dec 2023 12:15:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-25 15:03:09.655467
- Title: Balancing Energy Efficiency and Distributional Robustness in
Over-the-Air Federated Learning
- Title(参考訳): オーバーザ・エアフェデレーション学習におけるエネルギー効率と分布ロバスト性のバランス
- Authors: Mohamed Badi, Chaouki Ben Issaid, Anis Elgabli and Mehdi Bennis
- Abstract要約: 本稿では,空気計算(AirComp)を用いた分布型頑健な連邦学習(FL)におけるエネルギー効率を保証する新しい手法を提案する。
本稿では,エネルギー効率に配慮した決定論的手法と,分散ロバスト性に配慮した確率論的手法の2つの相補的な洞察を統合する新しいクライアント選択手法を提案する。
シミュレーションの結果,提案アルゴリズムの有効性を実証し,ロバスト性およびエネルギー効率の両面から,ベースラインよりも優れた性能を示した。
- 参考スコア(独自算出の注目度): 40.96977338485749
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The growing number of wireless edge devices has magnified challenges
concerning energy, bandwidth, latency, and data heterogeneity. These challenges
have become bottlenecks for distributed learning. To address these issues, this
paper presents a novel approach that ensures energy efficiency for
distributionally robust federated learning (FL) with over air computation
(AirComp). In this context, to effectively balance robustness with energy
efficiency, we introduce a novel client selection method that integrates two
complementary insights: a deterministic one that is designed for energy
efficiency, and a probabilistic one designed for distributional robustness.
Simulation results underscore the efficacy of the proposed algorithm, revealing
its superior performance compared to baselines from both robustness and energy
efficiency perspectives, achieving more than 3-fold energy savings compared to
the considered baselines.
- Abstract(参考訳): ワイヤレスエッジデバイスの増加により、エネルギー、帯域幅、レイテンシ、データの均一性に関する課題が拡大した。
これらの課題は分散学習のボトルネックになっている。
これらの問題に対処するため,エアコン(AirComp)を用いた分布的堅牢な連邦学習(FL)におけるエネルギー効率を保証する新しい手法を提案する。
本研究では,エネルギー効率とロバスト性を効果的にバランスさせるために,エネルギー効率に配慮した決定論的手法と,分散ロバスト性に配慮した確率論的手法の2つの相補的な洞察を統合する新しいクライアント選択手法を導入する。
シミュレーションの結果,提案アルゴリズムの有効性は,ロバスト性とエネルギー効率の両面から,ベースラインよりも優れた性能を示し,ベースラインよりも3倍以上の省エネを実現している。
関連論文リスト
- Energy-Efficient Federated Edge Learning with Streaming Data: A Lyapunov Optimization Approach [34.00679567444125]
本研究では,長期エネルギー制約下でのデータ到着や資源の可利用性に固有のランダム性に対処する動的スケジューリングと資源割当アルゴリズムを開発した。
提案アルゴリズムは, デバイススケジューリング, 計算容量調整, 帯域幅の割り当ておよび各ラウンドの送信電力を適応的に決定する。
本手法の有効性をシミュレーションにより検証し,ベースライン方式と比較して学習性能とエネルギー効率が向上したことを示す。
論文 参考訳(メタデータ) (2024-05-20T14:13:22Z) - Multiagent Reinforcement Learning with an Attention Mechanism for
Improving Energy Efficiency in LoRa Networks [52.96907334080273]
ネットワーク規模が大きくなるにつれて、パケット衝突によるLoRaネットワークのエネルギー効率は急激に低下する。
マルチエージェント強化学習(MALoRa)に基づく伝送パラメータ割り当てアルゴリズムを提案する。
シミュレーションの結果,MALoRaはベースラインアルゴリズムと比較してシステムEEを著しく改善することがわかった。
論文 参考訳(メタデータ) (2023-09-16T11:37:23Z) - A Stochastic Online Forecast-and-Optimize Framework for Real-Time Energy
Dispatch in Virtual Power Plants under Uncertainty [18.485617498705736]
本稿では,2つの要素から構成されるリアルタイム不確実性を考慮したエネルギー分散フレームワークを提案する。
提案するフレームワークは,リアルタイムデータ配信に迅速に適応すると同時に,データドリフトやモデルの不一致,制御プロセスの環境摂動などによる不確実性もターゲットとすることができる。
このフレームワークはCityLearn Challenge 2022で優勝し、エネルギー領域におけるAIアプリケーションの可能性を調べる影響力のある機会となった。
論文 参考訳(メタデータ) (2023-09-15T00:04:00Z) - Energy-Aware Federated Learning with Distributed User Sampling and
Multichannel ALOHA [3.7769304982979666]
エッジデバイス上での分散学習は、フェデレートラーニング(FL)の出現によって注目を集めている。
本稿では,エネルギ収穫装置(EH)をマルチチャネルALOHAとFLネットワークに統合することを検討する。
数値的な結果は,特に臨界設定において,この手法の有効性を示す。
論文 参考訳(メタデータ) (2023-09-12T08:05:39Z) - A Safe Genetic Algorithm Approach for Energy Efficient Federated
Learning in Wireless Communication Networks [53.561797148529664]
フェデレートラーニング(FL)は、従来の集中型アプローチとは対照的に、デバイスが協調的にモデルトレーニングを行う分散技術として登場した。
FLの既存の取り組みにもかかわらず、その環境影響は、無線ネットワークへの適用性に関するいくつかの重要な課題が特定されているため、まだ調査中である。
現在の研究は遺伝的アルゴリズム(GA)アプローチを提案しており、FLプロセス全体のエネルギー消費と不要な資源利用の両方を最小化することを目標としている。
論文 参考訳(メタデータ) (2023-06-25T13:10:38Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
フェデレートラーニング(FL)は、グローバル機械学習モデルをトレーニングするためのソリューションを提供する。
FLは、クライアントデータの分散が非IIDであるときに性能劣化に悩まされる。
本稿では,この劣化に対処するために,新しい適応トレーニングアルゴリズムであるtextttAdaFL$を提案する。
論文 参考訳(メタデータ) (2021-08-12T14:18:05Z) - Sparse Optimization for Green Edge AI Inference [28.048770388766716]
エネルギー効率の良いエッジAI推論を実現するために,共同推論タスク選択とダウンリンクビームフォーミング戦略を提案する。
タスク選択の集合とグループ間隔送信ビームフォーミングベクトルとの固有の接続を利用して、グループスパースビームフォーミング問題として最適化を再構成する。
我々は,グローバル収束解析を確立し,このアルゴリズムのエルゴード最悪の収束率を提供する。
論文 参考訳(メタデータ) (2020-02-24T05:21:58Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Targeted free energy estimation via learned mappings [66.20146549150475]
自由エネルギー摂動 (FEP) は60年以上前にズワンツィヒによって自由エネルギー差を推定する方法として提案された。
FEPは、分布間の十分な重複の必要性という厳しい制限に悩まされている。
目標自由エネルギー摂動(Targeted Free Energy Perturbation)と呼ばれるこの問題を緩和するための1つの戦略は、オーバーラップを増やすために構成空間の高次元マッピングを使用する。
論文 参考訳(メタデータ) (2020-02-12T11:10:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。