論文の概要: Using Random Walks for Iterative Phase Estimation
- arxiv url: http://arxiv.org/abs/2208.04526v1
- Date: Tue, 9 Aug 2022 03:31:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-01 19:19:15.387202
- Title: Using Random Walks for Iterative Phase Estimation
- Title(参考訳): ランダムウォークを用いた反復位相推定
- Authors: Cassandra Granade, Nathan Wiebe
- Abstract要約: We provide a new approach to online Bayesian phase estimation that achieves Heisenberg limited scaling。
これは、既存の粒子フィルタ法ではミリ秒ではなく、CPU上でマイクロ秒で更新できることを意味している。
この研究は、オンラインベイズ推論が実用的で、効率的で、現代のFPGA駆動適応実験にデプロイする準備ができていることを示している。
- 参考スコア(独自算出の注目度): 12.892284518456059
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years there has been substantial development in algorithms for
quantum phase estimation. In this work we provide a new approach to online
Bayesian phase estimation that achieves Heisenberg limited scaling that
requires exponentially less classical processing time with the desired error
tolerance than existing Bayesian methods.
This practically means that we can perform an update in microseconds on a CPU
as opposed to milliseconds for existing particle filter methods. Our approach
assumes that the prior distribution is Gaussian and exploits the fact, when
optimal experiments are chosen, the mean of the prior distribution is given by
the position of a random walker whose moves are dictated by the measurement
outcomes. We then argue from arguments based on the Fisher information that our
algorithm provides a near-optimal analysis of the data. This work shows that
online Bayesian inference is practical, efficient and ready for deployment in
modern FPGA driven adaptive experiments.
- Abstract(参考訳): 近年,量子位相推定のためのアルゴリズムが開発されている。
本研究では,従来のベイズ法に比べて遅延許容度が望ましい古典的処理時間を指数関数的に少なくするハイゼンベルク限定スケーリングを実現する,オンラインベイズ位相推定への新たなアプローチを提案する。
これは、既存の粒子フィルタ法ではミリ秒ではなく、CPU上でマイクロ秒で更新できることを意味している。
提案手法では, 先行分布がガウス分布であると仮定し, 最適実験が選択された場合, 移動が測定結果によって決定されるランダムウォーカーの位置によって, 先行分布の平均が与えられる。
次に,フィッシャー情報に基づく議論から,本アルゴリズムがデータの最適に近い解析を提供するという議論を行う。
この研究は、オンラインベイズ推論が実用的で効率的であり、現代のfpga駆動適応実験で展開できることを示した。
関連論文リスト
- Unrolled denoising networks provably learn optimal Bayesian inference [54.79172096306631]
我々は、近似メッセージパッシング(AMP)のアンロールに基づくニューラルネットワークの最初の厳密な学習保証を証明した。
圧縮センシングでは、製品から引き出されたデータに基づいてトレーニングを行うと、ネットワークの層がベイズAMPで使用されるのと同じデノイザーに収束することを示す。
論文 参考訳(メタデータ) (2024-09-19T17:56:16Z) - Bayesian Online Natural Gradient (BONG) [9.800443064368467]
変分ベイズ(VB)に基づく逐次ベイズ推論への新しいアプローチを提案する。
重要な洞察は、オンライン環境では、前もって正規化するためにKLという用語を追加する必要はありません。
提案手法は,非共役条件下での他のオンラインVB手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-05-30T04:27:36Z) - Stochastic Bayesian Optimization with Unknown Continuous Context
Distribution via Kernel Density Estimation [28.413085548038932]
本稿では,カーネル密度推定を用いて連続文脈変数の確率密度関数(PDF)をオンラインで学習する2つのアルゴリズムを提案する。
理論的結果は、両方のアルゴリズムが期待する目的に対して準線形ベイズ累積後悔を持つことを示している。
論文 参考訳(メタデータ) (2023-12-16T11:32:28Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - Neural Operator Variational Inference based on Regularized Stein
Discrepancy for Deep Gaussian Processes [23.87733307119697]
本稿では,深いガウス過程に対するニューラル演算子変分推論(NOVI)を提案する。
NOVIは、ニューラルジェネレータを使用してサンプリング装置を取得し、生成された分布と真の後部の間のL2空間における正規化スタインの離散性を最小化する。
提案手法が提案するバイアスは定数で発散を乗算することで制御可能であることを示す。
論文 参考訳(メタデータ) (2023-09-22T06:56:35Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - Post-Processing Temporal Action Detection [134.26292288193298]
時間的行動検出(TAD)法は、通常、入力された可変長のビデオを固定長のスニペット表現シーケンスに変換する際に、前処理のステップを踏む。
この前処理ステップは、ビデオを時間的にダウンサンプリングし、推論の解像度を低減し、元の時間分解における検出性能を阻害する。
モデルの再設計や再学習を伴わない新しいモデル非依存のポストプロセッシング手法を提案する。
論文 参考訳(メタデータ) (2022-11-27T19:50:37Z) - Transformers Can Do Bayesian Inference [56.99390658880008]
我々はPFN(Presideed Data Fitted Networks)を提案する。
PFNは、大規模機械学習技術におけるインコンテキスト学習を活用して、大規模な後部集合を近似する。
我々は、PFNがガウス過程をほぼ完璧に模倣し、難解問題に対する効率的なベイズ推定を可能にすることを示した。
論文 参考訳(メタデータ) (2021-12-20T13:07:39Z) - Sparse Algorithms for Markovian Gaussian Processes [18.999495374836584]
スパースマルコフ過程は、誘導変数の使用と効率的なカルマンフィルタライク再帰を結合する。
我々は,局所ガウス項を用いて非ガウス的確率を近似する一般的なサイトベースアプローチであるsitesを導出する。
提案手法は,変動推論,期待伝播,古典非線形カルマンスムーサなど,機械学習と信号処理の両方から得られるアルゴリズムの新たなスパース拡張の一群を導出する。
派生した方法は、モデルが時間と空間の両方で別々の誘導点を持つ文学時間データに適しています。
論文 参考訳(メタデータ) (2021-03-19T09:50:53Z) - The FMRIB Variational Bayesian Inference Tutorial II: Stochastic
Variational Bayes [1.827510863075184]
このチュートリアルは、オリジナルのFMRIB Variational Bayesチュートリアルを再考する。
この新しいアプローチは、機械学習アルゴリズムに適用された計算方法に多くの類似性を持ち、恩恵を受けている。
論文 参考訳(メタデータ) (2020-07-03T11:31:52Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
我々はヘッセン語の形成が計算的に困難であり、通信がボトルネックとなる分散最適化問題を考察する。
我々は、ヘッセンのサンプリングとスケッチを用いたランダム化二階最適化のための非バイアスパラメータ平均化手法を開発した。
また、不均一なコンピューティングシステムのための非バイアス分散最適化フレームワークを導入するために、二階平均化手法のフレームワークを拡張した。
論文 参考訳(メタデータ) (2020-02-16T09:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。