Using Random Walks for Iterative Phase Estimation
- URL: http://arxiv.org/abs/2208.04526v1
- Date: Tue, 9 Aug 2022 03:31:15 GMT
- Title: Using Random Walks for Iterative Phase Estimation
- Authors: Cassandra Granade, Nathan Wiebe
- Abstract summary: We provide a new approach to online Bayesian phase estimation that achieves Heisenberg limited scaling.
This practically means that we can perform an update in microseconds on a CPU as opposed to milliseconds for existing particle filter methods.
This work shows that online Bayesian inference is practical, efficient and ready for deployment in modern FPGA driven adaptive experiments.
- Score: 12.892284518456059
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years there has been substantial development in algorithms for
quantum phase estimation. In this work we provide a new approach to online
Bayesian phase estimation that achieves Heisenberg limited scaling that
requires exponentially less classical processing time with the desired error
tolerance than existing Bayesian methods.
This practically means that we can perform an update in microseconds on a CPU
as opposed to milliseconds for existing particle filter methods. Our approach
assumes that the prior distribution is Gaussian and exploits the fact, when
optimal experiments are chosen, the mean of the prior distribution is given by
the position of a random walker whose moves are dictated by the measurement
outcomes. We then argue from arguments based on the Fisher information that our
algorithm provides a near-optimal analysis of the data. This work shows that
online Bayesian inference is practical, efficient and ready for deployment in
modern FPGA driven adaptive experiments.
Related papers
- Unrolled denoising networks provably learn optimal Bayesian inference [54.79172096306631]
We prove the first rigorous learning guarantees for neural networks based on unrolling approximate message passing (AMP)
For compressed sensing, we prove that when trained on data drawn from a product prior, the layers of the network converge to the same denoisers used in Bayes AMP.
arXiv Detail & Related papers (2024-09-19T17:56:16Z) - Bayesian Online Natural Gradient (BONG) [9.800443064368467]
We propose a novel approach to sequential Bayesian inference based on variational Bayes (VB)
The key insight is that, in the online setting, we do not need to add the KL term to regularize to the prior.
We show empirically that our method outperforms other online VB methods in the non-conjugate setting.
arXiv Detail & Related papers (2024-05-30T04:27:36Z) - Stochastic Bayesian Optimization with Unknown Continuous Context
Distribution via Kernel Density Estimation [28.413085548038932]
We propose two algorithms that employ kernel density estimation to learn the probability density function (PDF) of continuous context variable online.
Theoretical results demonstrate that both algorithms have sub-linear Bayesian cumulative regret on the expectation objective.
arXiv Detail & Related papers (2023-12-16T11:32:28Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
We propose a novel equation discovery method based on Kernel learning and BAyesian Spike-and-Slab priors (KBASS)
We use kernel regression to estimate the target function, which is flexible, expressive, and more robust to data sparsity and noises.
We develop an expectation-propagation expectation-maximization algorithm for efficient posterior inference and function estimation.
arXiv Detail & Related papers (2023-10-09T03:55:09Z) - Neural Operator Variational Inference based on Regularized Stein
Discrepancy for Deep Gaussian Processes [23.87733307119697]
We introduce Neural Operator Variational Inference (NOVI) for Deep Gaussian Processes.
NOVI uses a neural generator to obtain a sampler and minimizes the Regularized Stein Discrepancy in L2 space between the generated distribution and true posterior.
We demonstrate that the bias introduced by our method can be controlled by multiplying the divergence with a constant, which leads to robust error control and ensures the stability and precision of the algorithm.
arXiv Detail & Related papers (2023-09-22T06:56:35Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
We propose an efficient online approximate Bayesian inference algorithm for estimating the parameters of a nonlinear function from a potentially non-stationary data stream.
The method is based on the extended Kalman filter (EKF), but uses a novel low-rank plus diagonal decomposition of the posterior matrix.
In contrast to methods based on variational inference, our method is fully deterministic, and does not require step-size tuning.
arXiv Detail & Related papers (2023-05-31T03:48:49Z) - Post-Processing Temporal Action Detection [134.26292288193298]
Temporal Action Detection (TAD) methods typically take a pre-processing step in converting an input varying-length video into a fixed-length snippet representation sequence.
This pre-processing step would temporally downsample the video, reducing the inference resolution and hampering the detection performance in the original temporal resolution.
We introduce a novel model-agnostic post-processing method without model redesign and retraining.
arXiv Detail & Related papers (2022-11-27T19:50:37Z) - Transformers Can Do Bayesian Inference [56.99390658880008]
We present Prior-Data Fitted Networks (PFNs)
PFNs leverage in-context learning in large-scale machine learning techniques to approximate a large set of posteriors.
We demonstrate that PFNs can near-perfectly mimic Gaussian processes and also enable efficient Bayesian inference for intractable problems.
arXiv Detail & Related papers (2021-12-20T13:07:39Z) - Sparse Algorithms for Markovian Gaussian Processes [18.999495374836584]
Sparse Markovian processes combine the use of inducing variables with efficient Kalman filter-likes recursion.
We derive a general site-based approach to approximate the non-Gaussian likelihood with local Gaussian terms, called sites.
Our approach results in a suite of novel sparse extensions to algorithms from both the machine learning and signal processing, including variational inference, expectation propagation, and the classical nonlinear Kalman smoothers.
The derived methods are suited to literature-temporal data, where the model has separate inducing points in both time and space.
arXiv Detail & Related papers (2021-03-19T09:50:53Z) - The FMRIB Variational Bayesian Inference Tutorial II: Stochastic
Variational Bayes [1.827510863075184]
This tutorial revisits the original FMRIB Variational Bayes tutorial.
This new approach bears a lot of similarity to, and has benefited from, computational methods applied to machine learning algorithms.
arXiv Detail & Related papers (2020-07-03T11:31:52Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
We consider distributed optimization problems where forming the Hessian is computationally challenging and communication is a bottleneck.
We develop unbiased parameter averaging methods for randomized second order optimization that employ sampling and sketching of the Hessian.
We also extend the framework of second order averaging methods to introduce an unbiased distributed optimization framework for heterogeneous computing systems.
arXiv Detail & Related papers (2020-02-16T09:01:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.