Copulaboost: additive modeling with copula-based model components
- URL: http://arxiv.org/abs/2208.04669v1
- Date: Tue, 9 Aug 2022 11:24:57 GMT
- Title: Copulaboost: additive modeling with copula-based model components
- Authors: Simon Boge Brant, Ingrid Hob{\ae}k Haff
- Abstract summary: We propose a type of generalised additive models with of model components based on pair-copula constructions.
We show that our method has a prediction performance that is either better than or comparable to the other methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a type of generalised additive models with of model components
based on pair-copula constructions, with prediction as a main aim. The model
components are designed such that our model may capture potentially complex
interaction effects in the relationship between the response covariates. In
addition, our model does not require discretisation of continuous covariates,
and is therefore suitable for problems with many such covariates. Further, we
have designed a fitting algorithm inspired by gradient boosting, as well as
efficient procedures for model selection and evaluation of the model
components, through constraints on the model space and approximations, that
speed up time-costly computations. In addition to being absolutely necessary
for our model to be a realistic alternative in higher dimensions, these
techniques may also be useful as a basis for designing efficient models
selection algorithms for other types of copula regression models. We have
explored the characteristics of our method in a simulation study, in particular
comparing it to natural alternatives, such as logic regression, classic
boosting models and penalised logistic regression. We have also illustrated our
approach on the Wisconsin breast cancer dataset and on the Boston housing
dataset. The results show that our method has a prediction performance that is
either better than or comparable to the other methods, even when the proportion
of discrete covariates is high.
Related papers
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.
We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.
Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - Embedding-based statistical inference on generative models [10.948308354932639]
We extend results related to embedding-based representations of generative models to classical statistical inference settings.
We demonstrate that using the perspective space as the basis of a notion of "similar" is effective for multiple model-level inference tasks.
arXiv Detail & Related papers (2024-10-01T22:28:39Z) - Model orthogonalization and Bayesian forecast mixing via Principal Component Analysis [0.0]
In many cases, the models used in the mixing process are similar.
The existence of such similar, or even redundant, models during the multimodeling process can result in misinterpretation of results and deterioration of predictive performance.
We show that by adding modelization to the proposed Bayesian Model Combination framework, one can arrive at better prediction accuracy and reach excellent uncertainty quantification performance.
arXiv Detail & Related papers (2024-05-17T15:01:29Z) - The effectiveness of factorization and similarity blending [0.0]
Collaborative Filtering (CF) is a technique which allows to leverage past users' preferences data to identify behavioural patterns and exploit them to predict custom recommendations.
We show that blending factorization-based and similarity-based approaches can lead to a significant error decrease (-9.4%) on stand-alone models.
We propose a novel extension of a similarity model, SCSR, which consistently reduce the complexity of the original algorithm.
arXiv Detail & Related papers (2022-09-16T13:11:27Z) - Split Modeling for High-Dimensional Logistic Regression [0.2676349883103404]
A novel method is proposed to an ensemble logistic classification model briefly compiled.
Our method learns how to exploit the bias-off resulting in excellent prediction accuracy.
An open-source software library implementing the proposed method is discussed.
arXiv Detail & Related papers (2021-02-17T05:57:26Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
We propose a novel method for performing Bayesian model comparison using specialized deep learning architectures.
Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset.
We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work.
arXiv Detail & Related papers (2020-04-22T15:15:46Z) - Adaptive Correlated Monte Carlo for Contextual Categorical Sequence
Generation [77.7420231319632]
We adapt contextual generation of categorical sequences to a policy gradient estimator, which evaluates a set of correlated Monte Carlo (MC) rollouts for variance control.
We also demonstrate the use of correlated MC rollouts for binary-tree softmax models, which reduce the high generation cost in large vocabulary scenarios.
arXiv Detail & Related papers (2019-12-31T03:01:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.