Silicon photonic devices for scalable quantum information applications
- URL: http://arxiv.org/abs/2208.05104v1
- Date: Wed, 10 Aug 2022 01:52:59 GMT
- Title: Silicon photonic devices for scalable quantum information applications
- Authors: Lantian Feng, Ming Zhang, Jianwei Wang, Xiaoqi Zhou, Xiaogang Qiang,
Guangcan Guo, Xifeng Ren
- Abstract summary: This paper reviews the relevant research results and state-of-the-art technologies on the silicon photonic chip for scalable quantum applications.
Despite the shortcomings, properties of some components have already met the requirements for further expansion.
- Score: 3.0944513782023786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With high integration density and excellent optical properties, silicon
photonics is becoming a promising platform for complete integration and
large-scale optical quantum information processing. Scalable quantum
information applications need photon generation and detection to be integrated
on the same chip, and we have seen that various devices on the silicon photonic
chip have been developed for this goal. This paper reviews the relevant
research results and state-of-the-art technologies on the silicon photonic chip
for scalable quantum applications. Despite the shortcomings, properties of some
components have already met the requirements for further expansion.
Furthermore, we point out the challenges ahead and further research directions
for on-chip scalable quantum information applications.
Related papers
- Information processing at the speed of light [0.0]
The introduction of quantum photonic chips has ushered in an era marked by scalability, stability, and cost-effectiveness.
This article provides a comprehensive exploration of photonic quantum computing, covering key aspects such as encoding information in photons.
The review further navigates the path towards establishing scalable and fault-tolerant photonic quantum computers.
arXiv Detail & Related papers (2024-10-01T06:43:44Z) - On chip high-dimensional entangled photon sources [0.0]
We review and introduce the nonlinear optical processes that facilitate on-chip high-dimensional entangled photon sources.
We discuss a range of current implementations of on-chip high-dimensional entangled photon sources and demonstrated applications.
arXiv Detail & Related papers (2024-09-05T03:43:10Z) - Quantum dots for photonic quantum information technology [0.0]
We discuss in depth the great potential of quantum dots (QDs) in photonic quantum information technology.
QDs form a key resource for the implementation of quantum communication networks and photonic quantum computers.
We present the most promising concepts for quantum light sources and photonic quantum circuits that include single QDs as active elements.
arXiv Detail & Related papers (2023-09-08T09:34:49Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Database of semiconductor point-defect properties for applications in
quantum technologies [54.17256385566032]
We have calculated over 50,000 point defects in various semiconductors including diamond, silicon carbide, and silicon.
We characterize the relevant optical and electronic properties of these defects, including formation energies, spin characteristics, transition dipole moments, zero-phonon lines.
We find 2331 composite defects which are stable in intrinsic silicon, which are then filtered to identify many new optically bright telecom spin qubit candidates and single-photon sources.
arXiv Detail & Related papers (2023-03-28T19:51:08Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Quantum Information Processing With Integrated Silicon Carbide Photonics [0.0]
Color centers in wide band gap semiconductors are prominent candidates for solid-state quantum technologies.
Silicon carbide color centers integrated into photonic devices span a wide range of applications in quantum information processing.
arXiv Detail & Related papers (2021-10-30T01:30:26Z) - Single-photon quantum hardware: towards scalable photonic quantum
technology with a quantum advantage [0.41998444721319217]
We will present the current state-of-the-art in single-photon quantum hardware and the main photonic building blocks required in order to scale up.
We will point out specific promising applications of the hardware building blocks within quantum communication and photonic quantum computing.
arXiv Detail & Related papers (2021-03-01T16:22:59Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.