Scalable neural quantum states architecture for quantum chemistry
- URL: http://arxiv.org/abs/2208.05637v1
- Date: Thu, 11 Aug 2022 04:40:02 GMT
- Title: Scalable neural quantum states architecture for quantum chemistry
- Authors: Tianchen Zhao, James Stokes, Shravan Veerapaneni
- Abstract summary: Variational optimization of neural-network representations of quantum states has been successfully applied to solve interacting fermionic problems.
We introduce scalable parallelization strategies to improve neural-network-based variational quantum Monte Carlo calculations for ab-initio quantum chemistry applications.
- Score: 5.603379389073144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational optimization of neural-network representations of quantum states
has been successfully applied to solve interacting fermionic problems. Despite
rapid developments, significant scalability challenges arise when considering
molecules of large scale, which correspond to non-locally interacting quantum
spin Hamiltonians consisting of sums of thousands or even millions of Pauli
operators. In this work, we introduce scalable parallelization strategies to
improve neural-network-based variational quantum Monte Carlo calculations for
ab-initio quantum chemistry applications. We establish GPU-supported local
energy parallelism to compute the optimization objective for Hamiltonians of
potentially complex molecules. Using autoregressive sampling techniques, we
demonstrate systematic improvement in wall-clock timings required to achieve
CCSD baseline target energies. The performance is further enhanced by
accommodating the structure of resultant spin Hamiltonians into the
autoregressive sampling ordering. The algorithm achieves promising performance
in comparison with the classical approximate methods and exhibits both running
time and scalability advantages over existing neural-network based methods.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Hamiltonian Quantum Generative Adversarial Networks [4.806505912512235]
We propose Hamiltonian Quantum Generative Adversarial Networks (HQuGANs) to learn to generate unknown input quantum states.
We numerically demonstrate the capabilities of the proposed framework to learn various highly entangled many-body quantum states.
arXiv Detail & Related papers (2022-11-04T16:53:55Z) - Classical simulation of short-time quantum dynamics [0.0]
We present classical algorithms for approximating the dynamics of local observables and nonlocal quantities.
We establish a novel quantum speed limit, a bound on dynamical phase transitions, and a concentration bound for product states evolved for short times.
arXiv Detail & Related papers (2022-10-20T18:00:04Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
Variational quantum-classical hybrid algorithms are seen as a promising strategy for solving practical problems on quantum computers in the near term.
Here, we introduce the fast-and-slow algorithm, which uses gradients to identify a promising region in Bayesian space.
Our results move variational quantum algorithms closer to their envisioned applications in quantum chemistry, optimization, and quantum simulation problems.
arXiv Detail & Related papers (2022-03-04T17:48:57Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Autoregressive neural-network wavefunctions for ab initio quantum
chemistry [3.5987961950527287]
We parameterise the electronic wavefunction with a novel autoregressive neural network (ARN)
This allows us to perform electronic structure calculations on molecules with up to 30 spin-orbitals.
arXiv Detail & Related papers (2021-09-26T13:44:41Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
We present an approach for tackling open quantum system dynamics.
We compactly represent quantum states with autoregressive transformer neural networks.
Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator.
arXiv Detail & Related papers (2020-09-11T18:00:00Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.