Autoregressive neural-network wavefunctions for ab initio quantum
chemistry
- URL: http://arxiv.org/abs/2109.12606v1
- Date: Sun, 26 Sep 2021 13:44:41 GMT
- Title: Autoregressive neural-network wavefunctions for ab initio quantum
chemistry
- Authors: Thomas D. Barrett, Aleksei Malyshev and A. I. Lvovsky
- Abstract summary: We parameterise the electronic wavefunction with a novel autoregressive neural network (ARN)
This allows us to perform electronic structure calculations on molecules with up to 30 spin-orbitals.
- Score: 3.5987961950527287
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Performing electronic structure calculations is a canonical many-body problem
that has recently emerged as a challenging new paradigm for neural network
quantum states (NNQS). Here, we parameterise the electronic wavefunction with a
novel autoregressive neural network (ARN) that permits highly efficient and
scalable sampling, whilst also embedding physical priors that reflect the
structure of molecular systems without sacrificing expressibility. This allows
us to perform electronic structure calculations on molecules with up to 30
spin-orbitals - which consider multiple orders of magnitude more Slater
determinants than previous applications of conventional NNQS - and we find that
our ansatz can outperform the de-facto gold-standard coupled cluster methods
even in the presence of strong quantum correlations. With a highly expressive
neural network for which sampling is no longer a computational bottleneck, we
conclude that the barriers to further scaling are not associated with the
wavefunction ansatz itself, but rather are inherent to any variational Monte
Carlo approach.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Emergence of global receptive fields capturing multipartite quantum correlations [0.565473932498362]
In quantum physics, even simple data with a well-defined structure at the wave function level can be characterized by extremely complex correlations.
We show that monitoring the neural network weight space while learning quantum statistics allows to develop physical intuition about complex multipartite patterns.
Our findings suggest a fresh look at constructing convolutional neural networks for processing data with non-local patterns.
arXiv Detail & Related papers (2024-08-23T12:45:40Z) - Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations [58.130170155147205]
Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost.
Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently.
This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules.
arXiv Detail & Related papers (2024-05-23T16:30:51Z) - Information-driven Nonlinear Quantum Neuron [0.0]
In this study, a hardware-efficient quantum neural network operating as an open quantum system is proposed.
We show that this dissipative model based on repeated interactions, which allows for easy parametrization of input quantum information, exhibits differentiable, non-linear activation functions.
arXiv Detail & Related papers (2023-07-18T07:12:08Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Scalable neural quantum states architecture for quantum chemistry [5.603379389073144]
Variational optimization of neural-network representations of quantum states has been successfully applied to solve interacting fermionic problems.
We introduce scalable parallelization strategies to improve neural-network-based variational quantum Monte Carlo calculations for ab-initio quantum chemistry applications.
arXiv Detail & Related papers (2022-08-11T04:40:02Z) - An Application of Quantum Machine Learning on Quantum Correlated
Systems: Quantum Convolutional Neural Network as a Classifier for Many-Body
Wavefunctions from the Quantum Variational Eigensolver [0.0]
Recently proposed quantum convolutional neural network (QCNN) provides a new framework for using quantum circuits.
We present here the results from training the QCNN by the wavefunctions of the variational quantum eigensolver for the one-dimensional transverse field Ising model (TFIM)
The QCNN can be trained to predict the corresponding phase of wavefunctions around the putative quantum critical point, even though it is trained by wavefunctions far away from it.
arXiv Detail & Related papers (2021-11-09T12:08:49Z) - Realizing Quantum Convolutional Neural Networks on a Superconducting
Quantum Processor to Recognize Quantum Phases [2.1465372441653354]
Quantum neural networks tailored to recognize specific features of quantum states by combining unitary operations, measurements and feedforward promise to require fewer measurements and to tolerate errors.
We realize a quantum convolutional neural network (QCNN) on a 7-qubit superconducting quantum processor to identify symmetry-protected topological phases of a spin model characterized by a non-zero string order parameter.
We find that, despite being composed of finite-fidelity gates itself, the QCNN recognizes the topological phase with higher fidelity than direct measurements of the string order parameter for the prepared states.
arXiv Detail & Related papers (2021-09-13T12:32:57Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.