KiPA22 Report: U-Net with Contour Regularization for Renal Structures
Segmentation
- URL: http://arxiv.org/abs/2208.05772v1
- Date: Wed, 10 Aug 2022 15:07:20 GMT
- Title: KiPA22 Report: U-Net with Contour Regularization for Renal Structures
Segmentation
- Authors: Kangqing Ye, Peng Liu, Qin Zhou, Guoyan Zheng
- Abstract summary: We use the nnU-Net framework, which is the state-of-the-art method for medical image segmentation.
To reduce the outlier prediction for the tumor label, we combine contour regularization (CR) loss of the tumor label with Dice loss and cross-entropy loss.
- Score: 10.438583569272303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Three-dimensional (3D) integrated renal structures (IRS) segmentation is
important in clinical practice. With the advancement of deep learning
techniques, many powerful frameworks focusing on medical image segmentation are
proposed. In this challenge, we utilized the nnU-Net framework, which is the
state-of-the-art method for medical image segmentation. To reduce the outlier
prediction for the tumor label, we combine contour regularization (CR) loss of
the tumor label with Dice loss and cross-entropy loss to improve this
phenomenon.
Related papers
- Panoptic Segmentation and Labelling of Lumbar Spine Vertebrae using Modified Attention Unet [2.8730926763860687]
We propose a modified attention U-Net architecture for panoptic segmentation of 3D sliced MRI data of the lumbar spine.
Our method achieves an impressive accuracy of 99.5% by incorporating novel masking logic.
arXiv Detail & Related papers (2024-04-28T19:35:00Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Uncertainty Driven Bottleneck Attention U-net for Organ at Risk
Segmentation [20.865775626533434]
Organ at risk (OAR) segmentation in computed tomography (CT) imagery is a difficult task for automated segmentation methods.
We propose a multiple decoder U-net architecture and use the segmentation disagreement between the decoders as attention to the bottleneck of the network.
For accurate segmentation, we also proposed a CT intensity integrated regularization loss.
arXiv Detail & Related papers (2023-03-19T23:45:32Z) - Structure-aware registration network for liver DCE-CT images [50.28546654316009]
We propose a novel structure-aware registration method by incorporating structural information of related organs with segmentation-guided deep registration network.
Our proposed method can achieve higher registration accuracy and preserve anatomical structure more effectively than state-of-the-art methods.
arXiv Detail & Related papers (2023-03-08T14:08:56Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Multi-Scale Supervised 3D U-Net for Kidneys and Kidney Tumor
Segmentation [0.8397730500554047]
We present a multi-scale supervised 3D U-Net, MSS U-Net, to automatically segment kidneys and kidney tumors from CT images.
Our architecture combines deep supervision with exponential logarithmic loss to increase the 3D U-Net training efficiency.
This architecture shows superior performance compared to state-of-the-art works using data from KiTS19 public dataset.
arXiv Detail & Related papers (2020-04-17T08:25:43Z) - Weakly Supervised Lesion Co-segmentation on CT Scans [18.58056402884405]
We propose a weakly-supervised co-segmentation model that first generates pseudo-masks from the RECIST slices.
We then use these as training labels for an attention-based convolutional neural network capable of segmenting common lesions from a pair of CT scans.
arXiv Detail & Related papers (2020-01-24T19:39:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.