論文の概要: Path-aware Siamese Graph Neural Network for Link Prediction
- arxiv url: http://arxiv.org/abs/2208.05781v1
- Date: Wed, 10 Aug 2022 13:47:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-12 12:55:22.381639
- Title: Path-aware Siamese Graph Neural Network for Link Prediction
- Title(参考訳): リンク予測のためのパス対応シームズグラフニューラルネットワーク
- Authors: Jingsong Lv, Zhao Li, Hongyang Chen, Yao Qi, and Chunqi Wu
- Abstract要約: 本稿では,リンク予測タスクのためのパス認識型Siamese Graph Neural Network(PSG)を提案する。
我々は,Open Graph Benchmark (OGB), ogbl-ddiのリンク特性予測データセットを用いて,提案アルゴリズムのPSGを評価する。
- 参考スコア(独自算出の注目度): 8.339564744332208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an algorithm of Path-aware Siamese Graph neural
network(PSG) for link prediction tasks. Firstly, PSG can capture both nodes and
edge features for given two nodes, namely the structure information of
k-neighborhoods and relay paths information of the nodes. Furthermore, siamese
graph neural network is utilized by PSG for representation learning of two
contrastive links, which are a positive link and a negative link. We evaluate
the proposed algorithm PSG on a link property prediction dataset of Open Graph
Benchmark (OGB), ogbl-ddi. PSG achieves top 1 performance on ogbl-ddi. The
experimental results verify the superiority of PSG.
- Abstract(参考訳): 本稿では,リンク予測タスクのためのパスアウェアシアームグラフニューラルネットワーク(psg)のアルゴリズムを提案する。
第一に、psgは与えられた2つのノード、すなわちk-neighborhoodの構造情報とノードのリレーパス情報の両方のノードとエッジの特徴をキャプチャできる。
さらに、正のリンクと負のリンクである2つのコントラストリンクの表現学習に、psgによってシアムグラフニューラルネットワークを利用する。
我々は,Open Graph Benchmark (OGB), ogbl-ddiのリンク特性予測データセットを用いて,提案アルゴリズムのPSGを評価する。
PSGはogbl-ddiでトップ1のパフォーマンスを達成する。
実験結果はPSGの優位性を検証した。
関連論文リスト
- Graph Convolutional Network For Semi-supervised Node Classification With Subgraph Sketching [0.27624021966289597]
本稿では,GLDGCNと呼ばれるグラフ学習型グラフ畳み込みニューラルネットワークを提案する。
半教師付きノード分類タスクにGLDGCNを適用する。
ベースライン手法と比較して,3つの引用ネットワークの分類精度が向上する。
論文 参考訳(メタデータ) (2024-04-19T09:08:12Z) - Pair then Relation: Pair-Net for Panoptic Scene Graph Generation [54.92476119356985]
Panoptic Scene Graph (PSG) は、ボックスの代わりにパン光学セグメンテーションを使用して、より包括的なシーングラフ表現を作成することを目的としている。
現在のPSGメソッドは性能が限られており、下流のタスクやアプリケーションを妨げる。
Pair then Relation (Pair-Net) - Pair Proposal Network (PPN) を用いて、対象と対象間の疎対関係を学習・フィルタリングする。
論文 参考訳(メタデータ) (2023-07-17T17:58:37Z) - Generating Post-hoc Explanations for Skip-gram-based Node Embeddings by
Identifying Important Nodes with Bridgeness [19.448849238643582]
DeepWalk、LINE、struc2vec、PTE、UserItem2vec、RWJBGなどの教師なしノード埋め込みメソッドがSkip-gramモデルから登場した。
本稿では,Skip-gramをベースとした埋め込みのグローバルな説明は,スペクトルクラスタを意識した局所摂動下でのブリッジネスの計算によって得られることを示す。
Graph-wGD と呼ばれる新しい勾配に基づく説明法を提案し,学習グラフ埋め込みベクトルのグローバルな説明をより効率的に行えるようにした。
論文 参考訳(メタデータ) (2023-04-24T12:25:35Z) - GIPA++: A General Information Propagation Algorithm for Graph Learning [34.0393139910052]
グラフニューラルネットワーク(GNN)は、グラフ構造化データ計算に広く利用されている。
よりきめ細かい情報融合を利用する汎用情報伝搬アルゴリズム(GIPA)を提案する。
GIPAは、その伝播におけるエッジ特徴に基づくビットワイドと特徴ワイドの相関を利用する。
論文 参考訳(メタデータ) (2023-01-19T18:00:51Z) - Line Graph Contrastive Learning for Link Prediction [4.876567687745239]
多視点情報を得るために,Line Graph Contrastive Learning (LGCL)法を提案する。
6つの公開データセットの実験により、LGCLはリンク予測タスクの現在のベンチマークを上回っている。
論文 参考訳(メタデータ) (2022-10-25T06:57:00Z) - Structure Enhanced Graph Neural Networks for Link Prediction [6.872826041648584]
リンク予測のための構造拡張グラフニューラルネットワーク(SEG)を提案する。
SEGは、ターゲットノードの周囲の位相情報を通常のGNNモデルに組み込む。
OGBリンク予測データセットの実験は、SEGが最先端の結果を達成することを示す。
論文 参考訳(メタデータ) (2022-01-14T03:49:30Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
階層型推論グラフネットワークの学習による顔の親和性検証の問題点について検討する。
より強力で柔軟なキャパシティを利用するために,星型推論グラフネットワーク(S-RGN)を開発した。
また、より強力で柔軟なキャパシティを利用する階層型推論グラフネットワーク(H-RGN)も開発しています。
論文 参考訳(メタデータ) (2021-09-06T03:16:56Z) - Interpretable Signed Link Prediction with Signed Infomax Hyperbolic
Graph [54.03786611989613]
ソーシャルネットワークにおけるサイン付きリンク予測は、ユーザ(すなわちノード)間の基盤となる関係(リンク)を明らかにすることを目的としている
我々は Signed Infomax Hyperbolic Graph (textbfSIHG) と呼ばれる統一されたフレームワークを開発する。
高次ユーザ関係と複雑な階層をモデル化するために、ノードの埋め込みを投影し、より低歪みの双曲空間で測定する。
論文 参考訳(メタデータ) (2020-11-25T05:09:03Z) - Node Similarity Preserving Graph Convolutional Networks [51.520749924844054]
グラフニューラルネットワーク(GNN)は、ノード近傍の情報を集約し変換することで、グラフ構造とノードの特徴を探索する。
グラフ構造を利用してノード類似性を効果的かつ効率的に保存できるSimP-GCNを提案する。
本研究は,SimP-GCNが3つの分類グラフと4つの非補助グラフを含む7つのベンチマークデータセットに対して有効であることを示す。
論文 参考訳(メタデータ) (2020-11-19T04:18:01Z) - Unifying Graph Convolutional Neural Networks and Label Propagation [73.82013612939507]
LPAとGCNの関係を特徴・ラベルの平滑化と特徴・ラベルの影響の2点の観点から検討した。
理論解析に基づいて,ノード分類のためのGCNとLCAを統一するエンドツーエンドモデルを提案する。
我々のモデルは、既存の特徴に基づく注目モデルよりもタスク指向のノードラベルに基づく学習注意重みと見なすこともできる。
論文 参考訳(メタデータ) (2020-02-17T03:23:13Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
半教師付きノード分類の性能を高めるためのグラフ推論学習フレームワークを提案する。
推論過程の学習には,トレーニングノードから検証ノードへの構造関係のメタ最適化を導入する。
4つのベンチマークデータセットの総合的な評価は、最先端の手法と比較して提案したGILの優位性を示している。
論文 参考訳(メタデータ) (2020-01-17T02:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。