論文の概要: Graph Convolutional Network For Semi-supervised Node Classification With Subgraph Sketching
- arxiv url: http://arxiv.org/abs/2404.12724v2
- Date: Thu, 25 Apr 2024 06:04:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 20:19:09.521537
- Title: Graph Convolutional Network For Semi-supervised Node Classification With Subgraph Sketching
- Title(参考訳): 部分グラフスケッチを用いた半教師付きノード分類のためのグラフ畳み込みネットワーク
- Authors: Zibin Huang, Jun Xian,
- Abstract要約: 本稿では,GLDGCNと呼ばれるグラフ学習型グラフ畳み込みニューラルネットワークを提案する。
半教師付きノード分類タスクにGLDGCNを適用する。
ベースライン手法と比較して,3つの引用ネットワークの分類精度が向上する。
- 参考スコア(独自算出の注目度): 0.27624021966289597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose the Graph-Learning-Dual Graph Convolutional Neural Network called GLDGCN based on the classic Graph Convolutional Neural Network(GCN) by introducing dual convolutional layer and graph learning layer. We apply GLDGCN to the semi-supervised node classification task. Compared with the baseline methods, we achieve higher classification accuracy on three citation networks Citeseer, Cora and Pubmed, and we also analyze and discussabout selection of the hyperparameters and network depth. GLDGCN also perform well on the classic social network KarateClub and the new Wiki-CS dataset. For the insufficient ability of our algorithm to process large graphs during the experiment, we also introduce subgraph clustering and stochastic gradient descent methods into GCN and design a semi-supervised node classification algorithm based on the CLustering Graph Convolutional neural Network, which enables GCN to process large graph and improves its application value. We complete semi-supervised node classification experiments on two classic large graph which are PPI dataset (more than 50,000 nodes) and Reddit dataset (more than 200,000 nodes), and also perform well.
- Abstract(参考訳): 本稿では,従来のグラフ畳み込みニューラルネットワーク(GCN)に基づくGLDGCN(Graph-Learning-Dual Graph Convolutional Neural Network)を提案する。
半教師付きノード分類タスクにGLDGCNを適用する。
ベースライン法と比較して,Citeseer,Cora,Pubmedの3つの引用ネットワークの分類精度が高く,ハイパーパラメータの選択とネットワーク深度について分析・議論する。
GLDGCNは、古典的なソーシャルネットワークKarateClubと、新しいWiki-CSデータセットでもうまく機能している。
実験中に大きなグラフを処理するアルゴリズムの能力が不十分であるため、GCNにサブグラフクラスタリングと確率勾配降下法を導入し、Clustering Graph Convolutional Neural Networkに基づく半教師付きノード分類アルゴリズムを設計し、GCNが大きなグラフを処理でき、そのアプリケーション価値が向上する。
PPIデータセット(5万ノード以上)とRedditデータセット(20万ノード以上)の2つの古典的大規模グラフに対する半教師付きノード分類実験を完了し、性能も向上した。
関連論文リスト
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - You do not have to train Graph Neural Networks at all on text-attributed graphs [25.044734252779975]
我々は、同じクラスからのテキストエンコーディングがしばしば線形部分空間に集約されるという観察に乗じて、線形GNNモデルであるTrainlessGNNを紹介した。
実験の結果、私たちのトレインレスモデルは、従来の訓練済みのモデルにマッチするか、超えられることがわかった。
論文 参考訳(メタデータ) (2024-04-17T02:52:11Z) - L^2GC:Lorentzian Linear Graph Convolutional Networks for Node Classification [12.69417276887153]
ローレンツ線形GCNの新しいフレームワークを提案する。
グラフノードの学習した特徴を双曲空間にマッピングする。
次に、ロレンツ線形特徴変換を行い、基礎となる木のようなデータ構造をキャプチャする。
論文 参考訳(メタデータ) (2024-03-10T02:16:13Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
本稿では,重なり合うノード群間の相互作用を集約することで,観測されたエッジがどのように生成されるかをモデル化するグラフ生成プロセスを提案する。
それぞれのエッジを複数のコミュニティ固有の重み付きエッジの和に分割し、コミュニティ固有のGNNを定義する。
エッジを異なるコミュニティに分割するGNNベースの推論ネットワーク,これらのコミュニティ固有のGNN,およびコミュニティ固有のGNNを最終分類タスクに組み合わせたGNNベースの予測器を共同で学習するために,変分推論フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T14:37:50Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
教師なしグラフ表現学習は、教師なしの低次元ノード埋め込みを学習することを目的としている。
本稿では、自己教師付き手法を用いた教師なしグラフ表現学習のための新しいクラスタ対応グラフニューラルネットワーク(CAGNN)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-03T13:57:18Z) - DeeperGCN: All You Need to Train Deeper GCNs [66.64739331859226]
グラフ畳み込みネットワーク(GCN)はグラフ上での表現学習の力で注目されている。
非常に深いレイヤを積み重ねることのできる畳み込みニューラルネットワーク(CNN)とは異なり、GCNはより深く進むと、勾配の消失、過度なスムース化、過度に適合する問題に悩まされる。
本稿では,非常に深いGCNを正常かつ確実に訓練できるDeeperGCNを提案する。
論文 参考訳(メタデータ) (2020-06-13T23:00:22Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - An Uncoupled Training Architecture for Large Graph Learning [20.784230322205232]
グラフデータをグリッドライクなデータに埋め込むための、柔軟なアンカップリングトレーニングフレームワークであるNode2Gridsを紹介します。
各ノードの影響を次々にランク付けすることで、Node2Gridsは最も影響力のある1階と、中央ノードの融合情報を持つ2階の隣人を選択する。
下流タスクの効率をさらに向上するために、単純なCNNベースのニューラルネットワークを使用して、マッピングされたグリッドのようなデータから重要な情報をキャプチャする。
論文 参考訳(メタデータ) (2020-03-21T11:49:16Z) - Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
via Gaussian Processes [144.6048446370369]
グラフ畳み込みニューラルネットワーク(GCN)は近年,グラフに基づく半教師付き半教師付き分類において有望な結果を示した。
グラフに基づく半教師付き学習のためのGCN(GPGC)を用いたGP回帰モデルを提案する。
GPGCを評価するための広範囲な実験を行い、他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-02-26T10:02:32Z) - Unifying Graph Convolutional Neural Networks and Label Propagation [73.82013612939507]
LPAとGCNの関係を特徴・ラベルの平滑化と特徴・ラベルの影響の2点の観点から検討した。
理論解析に基づいて,ノード分類のためのGCNとLCAを統一するエンドツーエンドモデルを提案する。
我々のモデルは、既存の特徴に基づく注目モデルよりもタスク指向のノードラベルに基づく学習注意重みと見なすこともできる。
論文 参考訳(メタデータ) (2020-02-17T03:23:13Z) - Geom-GCN: Geometric Graph Convolutional Networks [15.783571061254847]
本稿では,この2つの弱点を克服するために,グラフニューラルネットワークのための新しい幾何集約手法を提案する。
提案したアグリゲーションスキームは置換不変であり、ノード埋め込み、構造近傍、二レベルアグリゲーションという3つのモジュールから構成される。
また,このスキームをGeom-GCNと呼ばれるグラフ畳み込みネットワークに実装し,グラフ上でトランスダクティブ学習を行う。
論文 参考訳(メタデータ) (2020-02-13T00:03:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。