論文の概要: Partition Pooling for Convolutional Graph Network Applications in
Particle Physics
- arxiv url: http://arxiv.org/abs/2208.05952v1
- Date: Thu, 11 Aug 2022 17:43:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-12 13:49:05.230616
- Title: Partition Pooling for Convolutional Graph Network Applications in
Particle Physics
- Title(参考訳): 粒子物理学における畳み込みグラフネットワーク応用のためのパーティショニングプール
- Authors: M. Bachlechner (1), T. Birkenfeld (1), P. Soldin (1), A. Stahl (1) and
C. Wiebusch (1) ((1) III Physics Institute B, RWTH Aachen University)
- Abstract要約: 畳み込みグラフネットワークは、効率的な事象再構成と分類のために粒子物理学で使用される。
本稿では,パーティショニングを用いてグラフ上にスプーリングカーネルを生成するプール方式を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional graph networks are used in particle physics for effective event
reconstructions and classifications. However, their performances can be limited
by the considerable amount of sensors used in modern particle detectors if
applied to sensor-level data. We present a pooling scheme that uses
partitioning to create pooling kernels on graphs, similar to pooling on images.
Partition pooling can be used to adopt successful image recognition
architectures for graph neural network applications in particle physics. The
reduced computational resources allow for deeper networks and more extensive
hyperparameter optimizations. To show its applicability, we construct a
convolutional graph network with partition pooling that reconstructs simulated
interaction vertices for an idealized neutrino detector. The pooling network
yields improved performance and is less susceptible to overfitting than a
similar network without pooling. The lower resource requirements allow the
construction of a deeper network with further improved performance.
- Abstract(参考訳): 畳み込みグラフネットワークは、効果的な事象再構成と分類のために素粒子物理学で用いられる。
しかし、その性能はセンサーレベルのデータに適用した場合、現代の粒子検出器で使用される大量のセンサーによって制限される。
画像のプールングと類似した,グラフ上のカーネルをパーティショニングによって生成するプールスキームを提案する。
パーティションプーリングは、粒子物理学におけるグラフニューラルネットワーク応用のための画像認識アーキテクチャを成功させるのに使用できる。
計算資源の削減により、より深いネットワークとより広範なハイパーパラメータ最適化が可能になる。
その適用性を示すために、理想的なニュートリノ検出器のための模擬相互作用頂点を再構成する分割プーリングを用いた畳み込みグラフネットワークを構築した。
プールネットワークは性能が向上し、プールのない類似ネットワークよりもオーバーフィットの影響を受けにくい。
リソース要件の低さにより、パフォーマンスがさらに向上したより深いネットワークの構築が可能になる。
関連論文リスト
- A Finite Element-Inspired Hypergraph Neural Network: Application to
Fluid Dynamics Simulations [4.984601297028257]
ディープラーニング研究の新たなトレンドは、連続体力学シミュレーションにおけるグラフニューラルネットワーク(GNN)の適用に焦点を当てている。
本稿では,ノードをエッジではなく要素で接続することでハイパーグラフを構築する手法を提案する。
本稿では,この手法を有限要素インスパイアされたハイパーグラフニューラルネットワーク(FEIH($phi$)-GNN)と呼ぶ。
論文 参考訳(メタデータ) (2022-12-30T04:10:01Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - All-optical graph representation learning using integrated diffractive
photonic computing units [51.15389025760809]
フォトニックニューラルネットワークは、電子の代わりに光子を用いて脳にインスパイアされた計算を行う。
我々は、DGNN(diffractive graph neural network)と呼ばれる全光グラフ表現学習アーキテクチャを提案する。
ベンチマークデータベースを用いたノードおよびグラフレベルの分類タスクにおけるDGNN抽出機能の利用を実演し、優れた性能を実現する。
論文 参考訳(メタデータ) (2022-04-23T02:29:48Z) - ZippyPoint: Fast Interest Point Detection, Description, and Matching
through Mixed Precision Discretization [71.91942002659795]
我々は,ネットワーク量子化技術を用いて推論を高速化し,計算限定プラットフォームでの利用を可能にする。
バイナリディスクリプタを用いた効率的な量子化ネットワークZippyPointは,ネットワーク実行速度,ディスクリプタマッチング速度,3Dモデルサイズを改善する。
これらの改善は、ホモグラフィー推定、視覚的ローカライゼーション、マップフリーな視覚的再ローカライゼーションのタスクで評価されるように、小さなパフォーマンス劣化をもたらす。
論文 参考訳(メタデータ) (2022-03-07T18:59:03Z) - Graph Kernel Neural Networks [53.91024360329517]
本稿では、グラフ上の内部積を計算するカーネル関数であるグラフカーネルを用いて、標準畳み込み演算子をグラフ領域に拡張することを提案する。
これにより、入力グラフの埋め込みを計算する必要のない完全に構造的なモデルを定義することができる。
私たちのアーキテクチャでは,任意の種類のグラフカーネルをプラグインすることが可能です。
論文 参考訳(メタデータ) (2021-12-14T14:48:08Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
スペクトルグラフ畳み込みネットワーク(SGCN)はグラフ表現学習において注目を集めている。
本稿では,適応グラフウェーブレットを用いたグラフ畳み込みを実装した新しいスペクトルグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T17:57:53Z) - ItNet: iterative neural networks with small graphs for accurate and
efficient anytime prediction [1.52292571922932]
本研究では,計算グラフの観点から,メモリフットプリントが小さいネットワークモデルについて紹介する。
CamVidおよびCityscapesデータセットでセマンティックセグメンテーションの最新の結果を示します。
論文 参考訳(メタデータ) (2021-01-21T15:56:29Z) - Not Half Bad: Exploring Half-Precision in Graph Convolutional Neural
Networks [8.460826851547294]
現代の機械学習を用いた効率的なグラフ解析は、ますます注目を集めている。
ディープラーニングアプローチは、隣接行列全体にわたって運用されることが多い。
実行時間とメモリ要求の両方を削減するための効率的な対策を特定することが望ましい。
論文 参考訳(メタデータ) (2020-10-23T19:47:42Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle
Reconstruction in High Energy Physics [11.125632758828266]
FPGA上で1$mumathrms未満のレイテンシで実行できる距離重み付きグラフネットワークの設計方法について論じる。
本研究では,粒子衝突型加速器で動作する次世代熱量計における粒子の再構成と同定に関連する代表的課題について考察する。
我々は、圧縮されたモデルをファームウェアに変換し、FPGA上で実装する。
論文 参考訳(メタデータ) (2020-08-08T21:26:31Z) - Ramanujan Bipartite Graph Products for Efficient Block Sparse Neural
Networks [2.4235475271758076]
本稿では,グラフ積の理論を用いて,構造化マルチレベルブロックスパースニューラルネットワークを生成するフレームワークを提案する。
ラマヌジャングラフの積も提案するが、これは与えられた範囲で最高の接続性を与える。
我々は,VGG19とWideResnet-40-4ネットワークを用いて,CIFARデータセット上の画像分類タスクを実験することで,我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2020-06-24T05:08:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。