論文の概要: Evaluating the performance of sigmoid quantum perceptrons in quantum
neural networks
- arxiv url: http://arxiv.org/abs/2208.06198v1
- Date: Fri, 12 Aug 2022 10:08:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-31 08:42:12.906737
- Title: Evaluating the performance of sigmoid quantum perceptrons in quantum
neural networks
- Title(参考訳): 量子ニューラルネットワークにおけるsgmoid量子パーセプトロンの性能評価
- Authors: Samuel A Wilkinson and Michael J Hartmann
- Abstract要約: 量子機械学習のための有望なアーキテクチャとして量子ニューラルネットワーク(QNN)が提案されている。
1つの候補は古典的パーセプトロンの非線形活性化関数をエミュレートするために設計された量子パーセプトロンである。
本稿では,SQPネットワークの性能と性能を,その有効次元と有効容量の計算によって評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum neural networks (QNN) have been proposed as a promising architecture
for quantum machine learning. There exist a number of different quantum circuit
designs being branded as QNNs, however no clear candidate has presented itself
as more suitable than the others. Rather, the search for a ``quantum
perceptron" -- the fundamental building block of a QNN -- is still underway.
One candidate is quantum perceptrons designed to emulate the nonlinear
activation functions of classical perceptrons. Such sigmoid quantum perceptrons
(SQPs) inherit the universal approximation property that guarantees that
classical neural networks can approximate any function. However, this does not
guarantee that QNNs built from SQPs will have any quantum advantage over their
classical counterparts. Here we critically investigate both the capabilities
and performance of SQP networks by computing their effective dimension and
effective capacity, as well as examining their performance on real learning
problems. The results are compared to those obtained for other candidate
networks which lack activation functions. It is found that simpler, and
apparently easier-to-implement parametric quantum circuits actually perform
better than SQPs. This indicates that the universal approximation theorem,
which a cornerstone of the theory of classical neural networks, is not a
relevant criterion for QNNs.
- Abstract(参考訳): 量子機械学習のための有望なアーキテクチャとして量子ニューラルネットワーク(QNN)が提案されている。
様々な量子回路の設計がqnnとしてブランド化されているが、明確な候補が他より適しているわけではない。
むしろ、QNNの基本的なビルディングブロックである ``quantum perceptron' の検索はまだ進行中である。
1つの候補は古典的パーセプトロンの非線形活性化関数をエミュレートするために設計された量子パーセプトロンである。
このようなシグモイド量子パーセプトロン(SQP)は、古典的ニューラルネットワークが任意の関数を近似できることを保証する普遍近似特性を継承する。
しかし、これは、SQPから構築されたQNNが、従来のQNNよりも量子的に優位であることを保証するものではない。
本稿では,SQPネットワークの性能と性能の両立を,有効次元と有効能力の計算と実学習問題における性能の検証により批判的に検討する。
その結果,活性化機能を持たない他の候補ネットワークと比較した。
よりシンプルで明らかに実装が容易なパラメトリック量子回路は、実際にはSQPよりも性能が良いことが判明した。
これは、古典的ニューラルネットワークの理論の基礎となる普遍近似定理は、qnnの関連する基準ではないことを示している。
関連論文リスト
- Shedding Light on the Future: Exploring Quantum Neural Networks through Optics [3.1935899800030096]
量子ニューラルネットワーク(QNN)は、急速に発展する量子機械学習分野において、新興技術として重要な役割を果たす。
本稿では,QNNの概念とその物理的実現,特に量子光学に基づく実装について概説する。
論文 参考訳(メタデータ) (2024-09-04T08:49:57Z) - Quantum convolutional neural networks for jet images classification [0.0]
本稿では,高エネルギー物理学における量子機械学習の性能について述べる。
このタスクには量子畳み込みニューラルネットワーク(QCNN)を使用し、その性能をCNNと比較する。
以上の結果から,適切な設定のQCNNの方が,CNNよりも優れた性能を示す傾向が示唆された。
論文 参考訳(メタデータ) (2024-08-16T12:28:10Z) - Exploiting the equivalence between quantum neural networks and perceptrons [2.598133279943607]
パラメタライズド量子回路に基づく量子機械学習モデルは、量子デバイスへの応用において最も有望な候補であると考えられている。
我々はQNNの表現率と帰納バイアスを$x$から$xotimes x$に作用する古典的パーセプトロンへの入力を含むQNNからの正確なマッピングを利用して検討する。
論文 参考訳(メタデータ) (2024-07-05T09:19:58Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
本稿では,量子最適化アルゴリズムを用いて量子ニューラルネットワーク(QNN)のトレーニングを行う方法について検討する。
本稿では、変分量子ニューラルネットワーク(VQNN)と呼ばれる入力層として、変分パラメータ化回路を組み込んだQNN構造を作成する。
VQNNは、MNIST桁認識(複雑でない)とクラック画像分類データセットで実験され、QNNよりも少ない時間で、適切なトレーニング精度で計算を収束させる。
論文 参考訳(メタデータ) (2023-03-10T11:24:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - On Circuit-based Hybrid Quantum Neural Networks for Remote Sensing
Imagery Classification [88.31717434938338]
ハイブリッドQCNNは、標準ニューラルネットワーク内に量子層を導入することで、CNNの古典的なアーキテクチャを豊かにする。
この研究で提案された新しいQCNNは、地球観測(EO)のユースケースとして選択された土地利用・土地被覆(LULC)分類に適用される。
マルチクラス分類の結果は,QCNNの性能が従来の性能よりも高いことを示すことによって,提案手法の有効性を証明した。
論文 参考訳(メタデータ) (2021-09-20T12:41:50Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。