論文の概要: The dilemma of quantum neural networks
- arxiv url: http://arxiv.org/abs/2106.04975v1
- Date: Wed, 9 Jun 2021 10:41:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-11 00:46:48.879054
- Title: The dilemma of quantum neural networks
- Title(参考訳): 量子ニューラルネットワークのジレンマ
- Authors: Yang Qian, Xinbiao Wang, Yuxuan Du, Xingyao Wu, Dacheng Tao
- Abstract要約: 量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
- 参考スコア(独自算出の注目度): 63.82713636522488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The core of quantum machine learning is to devise quantum models with good
trainability and low generalization error bound than their classical
counterparts to ensure better reliability and interpretability. Recent studies
confirmed that quantum neural networks (QNNs) have the ability to achieve this
goal on specific datasets. With this regard, it is of great importance to
understand whether these advantages are still preserved on real-world tasks.
Through systematic numerical experiments, we empirically observe that current
QNNs fail to provide any benefit over classical learning models. Concretely,
our results deliver two key messages. First, QNNs suffer from the severely
limited effective model capacity, which incurs poor generalization on
real-world datasets. Second, the trainability of QNNs is insensitive to
regularization techniques, which sharply contrasts with the classical scenario.
These empirical results force us to rethink the role of current QNNs and to
design novel protocols for solving real-world problems with quantum advantages.
- Abstract(参考訳): 量子機械学習の中核は、より信頼性と解釈性を確保するために、従来のモデルよりも訓練性が高く、一般化誤差が低い量子モデルを開発することである。
最近の研究では、量子ニューラルネットワーク(QNN)が特定のデータセットでこの目標を達成する能力を持っていることが確認されている。
この点に関して、これらの利点がまだ現実世界のタスクで維持されているかどうかを理解することが非常に重要である。
系統的な数値実験により,現在のQNNは古典的学習モデルに対していかなるメリットも提供できないことを実証的に観察した。
具体的には、2つの重要なメッセージが送られます。
まず、QNNは、実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされる。
第2に、QNNのトレーニング容易性は、古典的なシナリオとは対照的な正規化技術に敏感である。
これらの実証的な結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
関連論文リスト
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) とContinuous Time Recurrent Quantum Neural Network (CTRQNet) を開発した。
LQNetとCTRQNetは、バイナリ分類によってCIFAR 10で40%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-08-28T00:56:03Z) - Coherent Feed Forward Quantum Neural Network [2.1178416840822027]
量子ニューラルネットワーク(QNN)に焦点をあてた量子機械学習は、いまだに膨大な研究分野である。
適応可能な中間層とノードの観点から,従来のFFNNの汎用性とシームレスに整合するボナフェイドQNNモデルを提案する。
本研究では,診断乳がん(Wisconsin)やクレジットカード不正検出データセットなど,さまざまなベンチマークデータセットを用いて提案モデルを検証した。
論文 参考訳(メタデータ) (2024-02-01T15:13:26Z) - Bridging Classical and Quantum Machine Learning: Knowledge Transfer From
Classical to Quantum Neural Networks Using Knowledge Distillation [0.0]
本稿では,知識蒸留を用いた古典的ニューラルネットワークから量子ニューラルネットワークへ知識を伝達する新しい手法を提案する。
我々は、LeNetやAlexNetのような古典的畳み込みニューラルネットワーク(CNN)アーキテクチャを教師ネットワークとして活用する。
量子モデルは、MNISTデータセットで0.80%、より複雑なFashion MNISTデータセットで5.40%の平均精度改善を達成する。
論文 参考訳(メタデータ) (2023-11-23T05:06:43Z) - A Post-Training Approach for Mitigating Overfitting in Quantum
Convolutional Neural Networks [0.24578723416255752]
量子畳み込みニューラルネットワーク(QCNN)におけるオーバーフィッティング軽減のためのポストトレーニング手法の検討
古典的なポストトレーニング手法であるニューロトン・ドロップアウトの量子設定への直接的な適応は、QCNNの成功確率を著しく低下させる。
我々は、この効果がQCNNにおける絡み合いの重要な役割と、QCNNの絡み合い損失に対する脆弱性を明らかにすることを論じる。
論文 参考訳(メタデータ) (2023-09-04T21:46:24Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - Classical-to-quantum convolutional neural network transfer learning [1.9336815376402723]
量子畳み込みニューラルネットワーク(QCNN)を用いた機械学習は、量子データ分類と古典データ分類の両方で成功している。
ノイズの多い中規模量子時代に小さなQCNNを利用するための効果的な方法として転送学習を提案する。
論文 参考訳(メタデータ) (2022-08-31T09:15:37Z) - Quantum neural networks with deep residual learning [29.929891641757273]
本稿では,深層残留学習(resqnn)を用いた新しい量子ニューラルネットワークを提案する。
ResQNNは未知のユニタリを学び、驚くべきパフォーマンスを得ることができます。
論文 参考訳(メタデータ) (2020-12-14T18:11:07Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。