Probabilistic Rank and Reward: A Scalable Model for Slate Recommendation
- URL: http://arxiv.org/abs/2208.06263v3
- Date: Fri, 5 Jul 2024 16:05:41 GMT
- Title: Probabilistic Rank and Reward: A Scalable Model for Slate Recommendation
- Authors: Imad Aouali, Achraf Ait Sidi Hammou, Otmane Sakhi, David Rohde, Flavian Vasile,
- Abstract summary: Probabilistic Rank and Reward (PRR) is a scalable probabilistic model for personalized slate recommendation.
We show that the probability of a slate being successful can be learned efficiently by combining the reward.
- Score: 7.764107702934617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Probabilistic Rank and Reward (PRR), a scalable probabilistic model for personalized slate recommendation. Our approach allows off-policy estimation of the reward in the scenario where the user interacts with at most one item from a slate of K items. We show that the probability of a slate being successful can be learned efficiently by combining the reward, whether the user successfully interacted with the slate, and the rank, the item that was selected within the slate. PRR outperforms existing off-policy reward optimizing methods and is far more scalable to large action spaces. Moreover, PRR allows fast delivery of recommendations powered by maximum inner product search (MIPS), making it suitable in low latency domains such as computational advertising.
Related papers
- Preference Optimization as Probabilistic Inference [21.95277469346728]
We propose a method that can leverage unpaired preferred or dis-preferred examples, and works even when only one type of feedback is available.
This flexibility allows us to apply it in scenarios with varying forms of feedback and models, including training generative language models.
arXiv Detail & Related papers (2024-10-05T14:04:03Z) - Robust Preference Optimization through Reward Model Distillation [68.65844394615702]
Language model (LM) post-training involves maximizing a reward function that is derived from preference annotations.
DPO is a popular offline alignment method that trains a policy directly on preference data without the need to train a reward model or apply reinforcement learning.
We analyze this phenomenon and propose distillation to get a better proxy for the true preference distribution over generation pairs.
arXiv Detail & Related papers (2024-05-29T17:39:48Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - A Unified Linear Programming Framework for Offline Reward Learning from Human Demonstrations and Feedback [6.578074497549894]
Inverse Reinforcement Learning (IRL) and Reinforcement Learning from Human Feedback (RLHF) are pivotal methodologies in reward learning.
This paper introduces a novel linear programming (LP) framework tailored for offline reward learning.
arXiv Detail & Related papers (2024-05-20T23:59:26Z) - Truncating Trajectories in Monte Carlo Reinforcement Learning [48.97155920826079]
In Reinforcement Learning (RL), an agent acts in an unknown environment to maximize the expected cumulative discounted sum of an external reward signal.
We propose an a-priori budget allocation strategy that leads to the collection of trajectories of different lengths.
We show that an appropriate truncation of the trajectories can succeed in improving performance.
arXiv Detail & Related papers (2023-05-07T19:41:57Z) - Distributional Reward Estimation for Effective Multi-Agent Deep
Reinforcement Learning [19.788336796981685]
We propose a novel Distributional Reward Estimation framework for effective Multi-Agent Reinforcement Learning (DRE-MARL)
Our main idea is to design the multi-action-branch reward estimation and policy-weighted reward aggregation for stabilized training.
The superiority of the DRE-MARL is demonstrated using benchmark multi-agent scenarios, compared with the SOTA baselines in terms of both effectiveness and robustness.
arXiv Detail & Related papers (2022-10-14T08:31:45Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
Click-through rate (CTR) prediction, whose goal is to predict the probability of the user to click on an item, has become increasingly significant in recommender systems.
Recent deep learning models with the ability to automatically extract the user interest from his/her behaviors have achieved great success.
We propose a novel approach under the framework of the wrapper method, which is named Meta-Wrapper.
arXiv Detail & Related papers (2022-06-28T03:28:15Z) - Quantifying Availability and Discovery in Recommender Systems via
Stochastic Reachability [27.21058243752746]
We propose an evaluation procedure based on reachability to quantify the maximum probability of recommending a target piece of content to a user.
reachability can be used to detect biases in the availability of content and diagnose limitations in the opportunities for discovery granted to users.
We demonstrate evaluations of recommendation algorithms trained on large datasets of explicit and implicit ratings.
arXiv Detail & Related papers (2021-06-30T16:18:12Z) - Policy Gradient Bayesian Robust Optimization for Imitation Learning [49.881386773269746]
We derive a novel policy gradient-style robust optimization approach, PG-BROIL, to balance expected performance and risk.
Results suggest PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse.
arXiv Detail & Related papers (2021-06-11T16:49:15Z) - Provably Efficient Reward-Agnostic Navigation with Linear Value
Iteration [143.43658264904863]
We show how iteration under a more standard notion of low inherent Bellman error, typically employed in least-square value-style algorithms, can provide strong PAC guarantees on learning a near optimal value function.
We present a computationally tractable algorithm for the reward-free setting and show how it can be used to learn a near optimal policy for any (linear) reward function.
arXiv Detail & Related papers (2020-08-18T04:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.