論文の概要: Developing a Philosophical Framework for Fair Machine Learning: The Case
of Algorithmic Collusion and Market Fairness
- arxiv url: http://arxiv.org/abs/2208.06308v1
- Date: Tue, 5 Jul 2022 16:21:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-06 12:19:47.200326
- Title: Developing a Philosophical Framework for Fair Machine Learning: The Case
of Algorithmic Collusion and Market Fairness
- Title(参考訳): 公平な機械学習のための哲学的枠組みの開発--アルゴリズム的共謀と市場公正の事例から
- Authors: James Michelson
- Abstract要約: 機械学習アルゴリズムが新しい文脈に適用されるにつれて、結果の害や不正は質的に異なる。
新しい領域における公平な機械学習研究のための倫理的枠組みを開発する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fair machine learning research has been primarily concerned with
classification tasks that result in discrimination. As machine learning
algorithms are applied in new contexts, however, the harms or injustices that
result are qualitatively different than those presently studied. Existing
research at the level of metrics and definitions cannot measure these
qualitatively different types of injustice. One example of this is the problem
of market fairness and algorithmic collusion. Negative consequences of
algorithmic collusion affect all consumers, not only particular members of a
protected class. Drawing on this case study, I develop an ethical framework for
fair machine learning research in new domains. This contribution ties the
development of fairness metrics to specifically scoped normative principles.
This enables fairness metrics to reflect different concerns from
discrimination. I develop this framework and provide the philosophical
rationale for its structure, ultimately applying it to the case of algorithmic
collusion. I conclude with limitations of my proposal and discuss promising
avenues of future research.
- Abstract(参考訳): 公正な機械学習の研究は、主に差別をもたらす分類タスクに関係している。
しかし、機械学習アルゴリズムが新しい文脈に適用されるにつれて、結果が現在研究されているものと質的に異なる害や不当さが生まれる。
メトリクスと定義のレベルにおける既存の研究は、これらの質的に異なるタイプの不正を測定できない。
この例の1つは、市場公正性とアルゴリズム的共謀の問題である。
アルゴリズム的結束の負の結果は、保護されたクラスの特定のメンバーだけでなく、すべての消費者に影響を与える。
このケーススタディをもとに,新しい領域における公平な機械学習研究のための倫理的枠組みを考案する。
この貢献は、公正度メトリクスの開発を、特に規範的原則の範囲に結び付けている。
これにより、公平度メトリクスは差別から異なる関心事を反映できる。
私はこの枠組みを開発し、その構造に関する哲学的根拠を提供し、最終的にアルゴリズム的結束の場合に適用する。
私の提案の限界で締めくくり、将来的な研究の道筋について論じます。
関連論文リスト
- A Survey on Intersectional Fairness in Machine Learning: Notions,
Mitigation, and Challenges [11.885166133818819]
機械学習システムの採用により、公平性への懸念が高まっている。
公平さと緩和の交叉観念に関する分類を提示する。
重要な課題を特定し、今後の方向性に関するガイドラインを研究者に提供する。
論文 参考訳(メタデータ) (2023-05-11T16:49:22Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
クロスドメイン学習(CD)とモデルフェアネスの関係について検討する。
いくつかの人口集団にまたがる顔画像と医療画像のベンチマークと、分類とローカライゼーションタスクについて紹介する。
本研究は,3つの最先端フェアネスアルゴリズムとともに,14のCDアプローチをカバーし,前者が後者に勝ることを示す。
論文 参考訳(メタデータ) (2023-03-25T09:34:05Z) - Individual Fairness under Uncertainty [26.183244654397477]
アルゴリズムフェアネス(英: Algorithmic Fairness)は、機械学習(ML)アルゴリズムにおいて確立された領域である。
本稿では,クラスラベルの検閲によって生じる不確実性に対処する,個別の公正度尺度とそれに対応するアルゴリズムを提案する。
この視点は、現実世界のアプリケーションデプロイメントにおいて、より現実的なフェアネス研究のモデルである、と我々は主張する。
論文 参考訳(メタデータ) (2023-02-16T01:07:58Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Fair Machine Learning in Healthcare: A Review [90.22219142430146]
我々は、機械学習と医療格差における公正性の交差を分析する。
機械学習の観点から、関連する公正度メトリクスを批判的にレビューする。
本稿では,医療における倫理的かつ公平なMLアプリケーション開発を約束する新たな研究指針を提案する。
論文 参考訳(メタデータ) (2022-06-29T04:32:10Z) - A Framework for Fairness: A Systematic Review of Existing Fair AI
Solutions [4.594159253008448]
公正性の研究の大部分は、機械学習の実践者がアルゴリズムを設計しながらバイアスを監査するために使用できるツールの開発に費やされている。
実際には、これらの公平性ソリューションの応用例が欠如している。
このレビューでは、定義されたアルゴリズムバイアス問題と提案された公正解空間の詳細な概要について述べる。
論文 参考訳(メタデータ) (2021-12-10T17:51:20Z) - The zoo of Fairness metrics in Machine Learning [62.997667081978825]
近年,機械学習(ML)と自動意思決定における公平性の問題が注目されている。
MLにおける公平性の定義の多様さが提案され、人口の個人に影響を与える状況において「公正な決定」とは何かという異なる概念が検討されている。
本研究では、この定義の動物園からある程度の順序付けを試みる。
論文 参考訳(メタデータ) (2021-06-01T13:19:30Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
機械学習におけるマルチグループフェアネスの研究(MultiFair)
この問題を解決するために,汎用的なエンドツーエンドのアルゴリズムフレームワークを提案する。
提案するフレームワークは多くの異なる設定に一般化可能である。
論文 参考訳(メタデータ) (2021-05-24T02:30:22Z) - Distributive Justice and Fairness Metrics in Automated Decision-making:
How Much Overlap Is There? [0.0]
機会の平等を実践する指標は、資源割り当てが保存性に基づいている場合にのみ適用されるが、アロケーションが平等主義、十分性、優先順位に関する懸念を反映すべきときに失敗することを示す。
予測タスクと意思決定タスクをきれいに区別することで、公平な機械学習の研究は分散的正義に関する豊かな文献をよりうまく活用できると論じている。
論文 参考訳(メタデータ) (2021-05-04T12:09:26Z) - Affirmative Algorithms: The Legal Grounds for Fairness as Awareness [0.0]
このようなアプローチがいかに「算術的肯定的行動」とみなされるかについて議論する。
我々は、政府契約の事件はアルゴリズムの公正性に代替的な根拠を与えると論じている。
我々は、偏り緩和が特定の原因と偏りのメカニズムに合わせたものであることを保証するために、アルゴリズム的公平性と因果推論の交点におけるさらなる研究を求める。
論文 参考訳(メタデータ) (2020-12-18T22:53:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。