論文の概要: A Survey on Intersectional Fairness in Machine Learning: Notions,
Mitigation, and Challenges
- arxiv url: http://arxiv.org/abs/2305.06969v2
- Date: Fri, 12 May 2023 22:50:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-16 11:05:58.103458
- Title: A Survey on Intersectional Fairness in Machine Learning: Notions,
Mitigation, and Challenges
- Title(参考訳): 機械学習における交叉的公平性に関する調査--概念,緩和,課題
- Authors: Usman Gohar, Lu Cheng
- Abstract要約: 機械学習システムの採用により、公平性への懸念が高まっている。
公平さと緩和の交叉観念に関する分類を提示する。
重要な課題を特定し、今後の方向性に関するガイドラインを研究者に提供する。
- 参考スコア(独自算出の注目度): 11.885166133818819
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread adoption of Machine Learning systems, especially in more
decision-critical applications such as criminal sentencing and bank loans, has
led to increased concerns about fairness implications. Algorithms and metrics
have been developed to mitigate and measure these discriminations. More
recently, works have identified a more challenging form of bias called
intersectional bias, which encompasses multiple sensitive attributes, such as
race and gender, together. In this survey, we review the state-of-the-art in
intersectional fairness. We present a taxonomy for intersectional notions of
fairness and mitigation. Finally, we identify the key challenges and provide
researchers with guidelines for future directions.
- Abstract(参考訳): 機械学習システムの普及は、特に刑事判決や銀行ローンといったより決定クリティカルなアプリケーションにおいて、公正性に関する懸念が高まっている。
これらの差別を緩和し、測定するためにアルゴリズムとメトリクスが開発されている。
より最近では、人種や性別といった複数の敏感な属性を包含する交叉バイアスと呼ばれる、より困難なバイアスの形式が特定されている。
本稿では,交差点フェアネスにおける最先端技術について概観する。
公平さと緩和の交叉観念に関する分類を提示する。
最後に、重要な課題を特定し、研究者に今後の方向性に関するガイドラインを提供する。
関連論文リスト
- Algorithmic Fairness: A Tolerance Perspective [31.882207568746168]
この調査はアルゴリズムの公正性に関する既存の文献を掘り下げ、特にその多面的な社会的影響を強調している。
我々は「寛容」に基づく新しい分類法を導入し、公正な結果の変動が許容される度合いとして定義する。
我々の体系的なレビューは多様な産業をカバーし、アルゴリズムによる意思決定と社会的株式のバランスに関する重要な洞察を明らかにしている。
論文 参考訳(メタデータ) (2024-04-26T08:16:54Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
クロスドメイン学習(CD)とモデルフェアネスの関係について検討する。
いくつかの人口集団にまたがる顔画像と医療画像のベンチマークと、分類とローカライゼーションタスクについて紹介する。
本研究は,3つの最先端フェアネスアルゴリズムとともに,14のCDアプローチをカバーし,前者が後者に勝ることを示す。
論文 参考訳(メタデータ) (2023-03-25T09:34:05Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - Survey on Fairness Notions and Related Tensions [4.257210316104905]
自動化された意思決定システムは、雇用やローンの貸与といった問題において、逐次的な決定を下すのにますます使われています。
しかし、客観的機械学習(ML)アルゴリズムはバイアスを起こしやすいため、不公平な判断を下す。
本稿では、一般的に使われている公正概念を調査し、プライバシと精度で両者間の緊張関係について論じる。
論文 参考訳(メタデータ) (2022-09-16T13:36:05Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Developing a Philosophical Framework for Fair Machine Learning: Lessons
From The Case of Algorithmic Collusion [0.0]
機械学習アルゴリズムが新しい文脈に適用されるにつれて、結果の害と不正は質的に異なる。
フェアネスのメトリクスと定義を開発する機械学習における既存の研究パラダイムは、これらの質的に異なる種類の不正を考慮できない。
本稿では,公正度指標の開発と適用を目指す機械学習の研究者や実践者を対象とした倫理的枠組みを提案する。
論文 参考訳(メタデータ) (2022-07-05T16:21:56Z) - Fair Machine Learning in Healthcare: A Review [90.22219142430146]
我々は、機械学習と医療格差における公正性の交差を分析する。
機械学習の観点から、関連する公正度メトリクスを批判的にレビューする。
本稿では,医療における倫理的かつ公平なMLアプリケーション開発を約束する新たな研究指針を提案する。
論文 参考訳(メタデータ) (2022-06-29T04:32:10Z) - Through the Data Management Lens: Experimental Analysis and Evaluation
of Fair Classification [75.49600684537117]
データ管理研究は、データとアルゴリズムの公平性に関連するトピックに対する存在感と関心が高まっている。
我々は,その正しさ,公平性,効率性,スケーラビリティ,安定性よりも,13の公正な分類アプローチと追加の変種を幅広く分析している。
我々の分析は、異なるメトリクスとハイレベルなアプローチ特性がパフォーマンスの異なる側面に与える影響に関する新しい洞察を強調します。
論文 参考訳(メタデータ) (2021-01-18T22:55:40Z) - Characterizing Intersectional Group Fairness with Worst-Case Comparisons [0.0]
我々は、公平度指標が交差性のレンズの下で検討される必要がある理由について議論する。
既存のグループ公平度指標の定義を拡張するための単純な最悪のケース比較方法を提案する。
現代の文脈における交差点の公平性を扱うための社会的、法的、政治的枠組みで締めくくります。
論文 参考訳(メタデータ) (2021-01-05T17:44:33Z) - Causal intersectionality for fair ranking [14.570546164100618]
我々は、公正な機械学習における交差性の適用を明確化し、重要な実世界効果とドメイン知識に結びつき、技術的な制限を透明化します。
我々は、実データと合成データセットに対する我々のアプローチを実験的に評価し、その振る舞いを異なる構造的仮定の下で探索した。
論文 参考訳(メタデータ) (2020-06-15T18:57:46Z) - Towards Robust Fine-grained Recognition by Maximal Separation of
Discriminative Features [72.72840552588134]
本研究は, 粒度認識ネットワークにおけるクラス間の潜伏表現の近接性を, 敵攻撃の成功の鍵となる要因として同定する。
注意に基づく正規化機構を導入し、異なるクラスの識別潜在特徴を最大限に分離する。
論文 参考訳(メタデータ) (2020-06-10T18:34:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。