Quantum-Enhanced Transmittance Sensing
- URL: http://arxiv.org/abs/2208.06447v3
- Date: Sun, 30 Oct 2022 15:52:05 GMT
- Title: Quantum-Enhanced Transmittance Sensing
- Authors: Zihao Gong, Nathaniel Rodriguez, Christos N. Gagatsos, Saikat Guha,
Boulat A. Bash
- Abstract summary: We consider the problem of estimating unknown transmittance $theta$ of a target bathed in thermal background light.
As quantum estimation theory yields the fundamental limits, we employ the lossy thermal-noise bosonic channel model.
We prove that quantum illumination using two-mode squeezed vacuum states achieves minimal quantum'er-Rao bound frequencies in the limit of low transmitted power.
- Score: 2.2439169036819124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of estimating unknown transmittance $\theta$ of a
target bathed in thermal background light. As quantum estimation theory yields
the fundamental limits, we employ the lossy thermal-noise bosonic channel
model, which describes sensor-target interaction quantum mechanically in many
practical active-illumination systems (e.g., using emissions at optical,
microwave, or radio frequencies). We prove that quantum illumination using
two-mode squeezed vacuum (TMSV) states asymptotically achieves minimal quantum
Cram\'{e}r-Rao bound (CRB) over all quantum states (not necessarily Gaussian)
in the limit of low transmitted power. We characterize the optimal receiver
structure for TMSV input, and show its advantage over other receivers using
both analysis and Monte Carlo simulation.
Related papers
- Bosonic Entanglement and Quantum Sensing from Energy Transfer in two-tone Floquet Systems [1.2499537119440245]
Quantum-enhanced sensors, which surpass the standard quantum limit (circuit) and approach the fundamental precision limits dictated by quantum mechanics, are finding applications across a wide range of scientific fields.
We introduce entanglement and preserve quantum information among many particles in a sensing circuit.
We propose a superconducting-entangled sensor in the microwave regime, highlighting its potential for practical applications in high-precision measurements.
arXiv Detail & Related papers (2024-10-15T00:48:01Z) - Quantum Target Ranging for LiDAR [0.0]
We investigate Quantum Target Ranging in the context of multi-hypothesis testing and its applicability to real-world LiDAR systems.
We demonstrate that ranging is generally an easier task compared to the well-studied problem of target detection.
We then analyze the theoretical bounds and advantages of quantum ranging in the context of phase-insensitive measurements.
arXiv Detail & Related papers (2024-08-05T17:00:14Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Microwave Gaussian quantum sensing with a CNOT gate receiver [1.1470070927586016]
In quantum illumination (QI) correlations between continuous variable (CV) entangled modes of radiation are exploited to detect the presence of a target embedded in thermal noise.
Here we propose a new QI receiver that utilizes a CV controlled not gate (CNOT) in order to perform a joint measurement on a target return and its retained twin.
Although the main focus of this study is microwave quantum sensing applications, our proposed device can be built as well in the optical domain.
arXiv Detail & Related papers (2023-07-03T13:45:06Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Transmission Estimation at the Fundamental Quantum Cram\'er-Rao Bound
with Macroscopic Quantum Light [0.0]
We show that it is possible to perform measurements with the required precision to do so.
For our largest transmission level of 84%, we show a 62% reduction over the optimal classical protocol in the variance in transmission estimation.
arXiv Detail & Related papers (2022-01-21T21:50:24Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Mid-infrared homodyne balanced detector for quantum light
characterization [52.77024349608834]
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared.
We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication.
arXiv Detail & Related papers (2021-03-16T11:08:50Z) - Entanglement Enhanced Estimation of a Parameter Embedded in Multiple
Phases [1.0828616610785522]
Quantum-enhanced sensing promises to improve the performance of sensing tasks using non-classical probes and measurements.
We propose a distributed distributed sensing framework that uses an entangled quantum probe to estimate a scene- parameter encoded within an array of phases.
We apply our framework to examples as diverse as radio-frequency phased-array directional radar, beam-displacement tracking for atomic-force microscopy, and fiber-based temperature gradiometry.
arXiv Detail & Related papers (2020-04-08T17:59:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.