HyP$^2$ Loss: Beyond Hypersphere Metric Space for Multi-label Image
Retrieval
- URL: http://arxiv.org/abs/2208.06866v1
- Date: Sun, 14 Aug 2022 15:06:27 GMT
- Title: HyP$^2$ Loss: Beyond Hypersphere Metric Space for Multi-label Image
Retrieval
- Authors: Chengyin Xu, Zenghao Chai, Zhengzhuo Xu, Chun Yuan, Yanbo Fan, Jue
Wang
- Abstract summary: We propose a novel metric learning framework with Hybrid Proxy-Pair Loss (HyP$2$ Loss)
The proposed HyP$2$ Loss focuses on optimizing the hypersphere space by learnable proxies and excavating data-to-data correlations of irrelevant pairs.
- Score: 20.53316810731414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image retrieval has become an increasingly appealing technique with broad
multimedia application prospects, where deep hashing serves as the dominant
branch towards low storage and efficient retrieval. In this paper, we carried
out in-depth investigations on metric learning in deep hashing for establishing
a powerful metric space in multi-label scenarios, where the pair loss suffers
high computational overhead and converge difficulty, while the proxy loss is
theoretically incapable of expressing the profound label dependencies and
exhibits conflicts in the constructed hypersphere space. To address the
problems, we propose a novel metric learning framework with Hybrid Proxy-Pair
Loss (HyP$^2$ Loss) that constructs an expressive metric space with efficient
training complexity w.r.t. the whole dataset. The proposed HyP$^2$ Loss focuses
on optimizing the hypersphere space by learnable proxies and excavating
data-to-data correlations of irrelevant pairs, which integrates sufficient data
correspondence of pair-based methods and high-efficiency of proxy-based
methods. Extensive experiments on four standard multi-label benchmarks justify
the proposed method outperforms the state-of-the-art, is robust among different
hash bits and achieves significant performance gains with a faster, more stable
convergence speed. Our code is available at
https://github.com/JerryXu0129/HyP2-Loss.
Related papers
- Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - Deep Metric Learning with Soft Orthogonal Proxies [1.823505080809275]
We propose a novel approach that introduces Soft Orthogonality (SO) constraint on proxies.
Our approach leverages Data-Efficient Image Transformer (DeiT) as an encoder to extract contextual features from images along with a DML objective.
Our evaluations demonstrate the superiority of our proposed approach over state-of-the-art methods by a significant margin.
arXiv Detail & Related papers (2023-06-22T17:22:15Z) - Robust Calibrate Proxy Loss for Deep Metric Learning [6.784952050036532]
We propose a Calibrate Proxy structure, which uses the real sample information to improve the similarity calculation in proxy-based loss.
We show that our approach can effectively improve the performance of commonly used proxy-based losses on both regular and noisy datasets.
arXiv Detail & Related papers (2023-04-06T02:43:10Z) - Cascading Hierarchical Networks with Multi-task Balanced Loss for
Fine-grained hashing [1.6244541005112747]
Fine-grained hashing is more challenging than traditional hashing problems.
We propose a cascaded network to learn compact and highly semantic hash codes.
We also propose a novel approach to coordinately balance the loss of multi-task learning.
arXiv Detail & Related papers (2023-03-20T17:08:48Z) - Asymmetric Scalable Cross-modal Hashing [51.309905690367835]
Cross-modal hashing is a successful method to solve large-scale multimedia retrieval issue.
We propose a novel Asymmetric Scalable Cross-Modal Hashing (ASCMH) to address these issues.
Our ASCMH outperforms the state-of-the-art cross-modal hashing methods in terms of accuracy and efficiency.
arXiv Detail & Related papers (2022-07-26T04:38:47Z) - Meta Clustering Learning for Large-scale Unsupervised Person
Re-identification [124.54749810371986]
We propose a "small data for big task" paradigm dubbed Meta Clustering Learning (MCL)
MCL only pseudo-labels a subset of the entire unlabeled data via clustering to save computing for the first-phase training.
Our method significantly saves computational cost while achieving a comparable or even better performance compared to prior works.
arXiv Detail & Related papers (2021-11-19T04:10:18Z) - LoOp: Looking for Optimal Hard Negative Embeddings for Deep Metric
Learning [17.571160136568455]
We propose a novel approach that looks for optimal hard negatives (LoOp) in the embedding space.
Unlike mining-based methods, our approach considers the entire space between pairs of embeddings to calculate the optimal hard negatives.
arXiv Detail & Related papers (2021-08-20T19:21:33Z) - Rank-Consistency Deep Hashing for Scalable Multi-Label Image Search [90.30623718137244]
We propose a novel deep hashing method for scalable multi-label image search.
A new rank-consistency objective is applied to align the similarity orders from two spaces.
A powerful loss function is designed to penalize the samples whose semantic similarity and hamming distance are mismatched.
arXiv Detail & Related papers (2021-02-02T13:46:58Z) - Self-supervised asymmetric deep hashing with margin-scalable constraint
for image retrieval [3.611160663701664]
We propose a novel self-supervised asymmetric deep hashing method with a margin-scalable constraint(SADH) approach for image retrieval.
SADH implements a self-supervised network to preserve semantic information in a semantic feature map and a semantic code map for the semantics of the given dataset.
For the feature learning part, a new margin-scalable constraint is employed for both highly-accurate construction of pairwise correlations in the hamming space and a more discriminative hash code representation.
arXiv Detail & Related papers (2020-12-07T16:09:37Z) - Deep Hashing with Hash-Consistent Large Margin Proxy Embeddings [65.36757931982469]
Image hash codes are produced by binarizing embeddings of convolutional neural networks (CNN) trained for either classification or retrieval.
The use of a fixed set of proxies (weights of the CNN classification layer) is proposed to eliminate this ambiguity.
The resulting hash-consistent large margin (HCLM) proxies are shown to encourage saturation of hashing units, thus guaranteeing a small binarization error.
arXiv Detail & Related papers (2020-07-27T23:47:43Z) - Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and
Self-Control Gradient Estimator [62.26981903551382]
Variational auto-encoders (VAEs) with binary latent variables provide state-of-the-art performance in terms of precision for document retrieval.
We propose a pairwise loss function with discrete latent VAE to reward within-class similarity and between-class dissimilarity for supervised hashing.
This new semantic hashing framework achieves superior performance compared to the state-of-the-arts.
arXiv Detail & Related papers (2020-05-21T06:11:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.