Prospects of federated machine learning in fluid dynamics
- URL: http://arxiv.org/abs/2208.07017v1
- Date: Mon, 15 Aug 2022 06:15:04 GMT
- Title: Prospects of federated machine learning in fluid dynamics
- Authors: Omer San, Suraj Pawar, Adil Rasheed
- Abstract summary: In recent years, machine learning has offered a renaissance to the fluid community due to the rapid developments in data science.
In this letter, we present a federated machine learning approach that enables localized to collaboratively learn an aggregated shared predictive model.
We demonstrate the feasibility and prospects of such decentralized learning approach with an effort to forge a deep learning surrogate model for reconstructingtemporal fields.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-based models have been mainstream in fluid dynamics for developing
predictive models. In recent years, machine learning has offered a renaissance
to the fluid community due to the rapid developments in data science,
processing units, neural network based technologies, and sensor adaptations. So
far in many applications in fluid dynamics, machine learning approaches have
been mostly focused on a standard process that requires centralizing the
training data on a designated machine or in a data center. In this letter, we
present a federated machine learning approach that enables localized clients to
collaboratively learn an aggregated and shared predictive model while keeping
all the training data on each edge device. We demonstrate the feasibility and
prospects of such decentralized learning approach with an effort to forge a
deep learning surrogate model for reconstructing spatiotemporal fields. Our
results indicate that federated machine learning might be a viable tool for
designing highly accurate predictive decentralized digital twins relevant to
fluid dynamics.
Related papers
- Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
Data-driven approximations of differential equations present a promising alternative to traditional methods for uncovering a model of dynamical systems.
A recently employed machine learning tool for studying dynamics is neural networks, which can be used for data-driven solution finding or discovery of differential equations.
We show that extending the model's generalizability beyond traditional statistical learning theory limits is feasible.
arXiv Detail & Related papers (2023-01-12T09:44:59Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Symplectic Momentum Neural Networks -- Using Discrete Variational
Mechanics as a prior in Deep Learning [7.090165638014331]
This paper introduces Sympic Momentum Networks (SyMo) as models from a discrete formulation of mechanics for non-separable mechanical systems.
We show that such combination not only allows these models tol earn from limited data but also provides the models with the capability of preserving the symplectic form and show better long-term behaviour.
arXiv Detail & Related papers (2022-01-20T16:33:19Z) - The Potential of Machine Learning to Enhance Computational Fluid
Dynamics [0.696194614504832]
Machine learning is rapidly becoming a core technology for scientific computing.
This paper highlights some of the areas of highest potential impact, including to accelerate direct numerical simulations.
It is essential for the community to continue to establish benchmark systems and best practices for open-source software.
arXiv Detail & Related papers (2021-10-05T14:34:16Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Using machine-learning modelling to understand macroscopic dynamics in a
system of coupled maps [0.0]
We consider a case study the macroscopic motion emerging from a system of globally coupled maps.
We build a coarse-grained Markov process for the macroscopic dynamics both with a machine learning approach and with a direct numerical computation of the transition probability of the coarse-grained process.
We are able to infer important information about the effective dimension of the attractor, the persistence of memory effects and the multi-scale structure of the dynamics.
arXiv Detail & Related papers (2020-11-08T15:38:12Z) - Watch and learn -- a generalized approach for transferrable learning in
deep neural networks via physical principles [0.0]
We demonstrate an unsupervised learning approach that achieves fully transferrable learning for problems in statistical physics across different physical regimes.
By coupling a sequence model based on a recurrent neural network to an extensive deep neural network, we are able to learn the equilibrium probability distributions and inter-particle interaction models of classical statistical mechanical systems.
arXiv Detail & Related papers (2020-03-03T18:37:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.