論文の概要: A Review of the Convergence of 5G/6G Architecture and Deep Learning
- arxiv url: http://arxiv.org/abs/2208.07643v1
- Date: Tue, 16 Aug 2022 10:05:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-17 12:11:43.777677
- Title: A Review of the Convergence of 5G/6G Architecture and Deep Learning
- Title(参考訳): 5G/6Gアーキテクチャとディープラーニングの収束性について
- Authors: Olusola T. Odeyomi, Olubiyi O. Akintade, Temitayo O. Olowu, and
Gergely Zaruba
- Abstract要約: 本稿では,鍵となる5G技術とディープラーニングの収束について概説する。
さらに、将来の6Gアーキテクチャの概要と、それがディープラーニングにどのように収束するかについても論じている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The convergence of 5G architecture and deep learning has gained a lot of
research interests in both the fields of wireless communication and artificial
intelligence. This is because deep learning technologies have been identified
to be the potential driver of the 5G technologies, that make up the 5G
architecture. Hence, there have been extensive surveys on the convergence of 5G
architecture and deep learning. However, most of the existing survey papers
mainly focused on how deep learning can converge with a specific 5G technology,
thus, not covering the full spectrum of the 5G architecture. Although there is
a recent survey paper that appears to be robust, a review of that paper shows
that it is not well structured to specifically cover the convergence of deep
learning and the 5G technologies. Hence, this paper provides a robust overview
of the convergence of the key 5G technologies and deep learning. The challenges
faced by such convergence are discussed. In addition, a brief overview of the
future 6G architecture, and how it can converge with deep learning is also
discussed.
- Abstract(参考訳): 5gアーキテクチャとディープラーニングの融合は、無線通信と人工知能の両方の分野で多くの研究の関心を集めている。
これは、ディープラーニング技術が5Gアーキテクチャを構成する5G技術の潜在的な原動力であると認識されているためである。
したがって、5Gアーキテクチャとディープラーニングの収束に関する広範な調査が行われた。
しかし、既存の調査論文のほとんどは、ディープラーニングが特定の5G技術にどのように収束するかに焦点を当てており、5Gアーキテクチャの全スペクトルをカバーしていない。
最近の調査論文は堅牢であるように思われるが、この論文のレビューでは、ディープラーニングと5gテクノロジの収束を具体的にカバーする構造が整っていないことが示されている。
そこで本稿では,鍵となる5g技術と深層学習の融合について概説する。
このような収束によって直面する課題について論じる。
さらに,今後の6gアーキテクチャの概要と,ディープラーニングにどのように収束するかについても述べる。
関連論文リスト
- Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration [56.330705072736166]
基礎モデルに基づく6GネイティブAIフレームワークを提案し、意図認識型PFMのカスタマイズアプローチを提供し、新しいクラウド-エッジコラボレーションパラダイムを概説する。
実例として,無線通信システムにおける最大和率を達成するために,このフレームワークをオーケストレーションに適用する。
論文 参考訳(メタデータ) (2023-10-26T15:19:40Z) - Beyond 5G Networks: Integration of Communication, Computing, Caching,
and Control [76.13180570097299]
まず、i4Cのさまざまな側面のスナップショットを示し、背景、モチベーション、主要な技術イネーブラー、潜在的なアプリケーション、ユースケースで構成されています。
我々は、i4Cに関連する最先端の研究成果を概観し、従来型と人工知能(AI)ベースの統合アプローチの最近の動向に注目した。
最後に,6Gなどの5Gネットワークを超えて,オープンな課題と今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2022-12-26T12:58:56Z) - AI Empowered Net-RCA for 6G [12.368396458140326]
6Gは、より高いデータレート、信頼性の向上、ユビキタスAIサービス、大規模な接続デバイスのサポートを提供すると想定されている。
6Gは前機種よりずっと複雑だ。
システムスケールと複雑性の増大、レガシネットワークとの共存、およびサービス要件の多様化は、必然的に、将来の6Gネットワークの保守コストと労力を増大させます。
論文 参考訳(メタデータ) (2022-12-01T07:38:32Z) - A Survey on XAI for 5G and Beyond Security: Technical Aspects, Challenges and Research Directions [5.955491600905514]
本稿では、5G以上の利害関係者が次世代ネットワークを保護するために使用されるインテリジェントなブラックボックスシステムを調べることができる、説明可能なAI(XAI)手法の可能性について検討する。
XAIを5G以降のセキュリティドメインで使用するという目標は、MLベースのセキュリティシステムの意思決定プロセスが5G以上のステークホルダに対して透過的かつ理解しやすいものになることだ。
論文 参考訳(メタデータ) (2022-04-27T10:26:24Z) - True-data Testbed for 5G/B5G Intelligent Network [46.09035008165811]
私たちは5G/B5Gインテリジェントネットワーク(TTIN)のための世界初の真のデータテストベッドを構築します
TTINは5G/B5Gオンサイト実験ネットワーク、データ取得とデータウェアハウス、AIエンジンとネットワーク最適化で構成されている。
本稿では,TTINのシステムアーキテクチャとモジュール設計について詳述する。
論文 参考訳(メタデータ) (2020-11-26T06:42:36Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
エッジインテリジェンス(エッジインテリジェンス、Edge Intelligence、別名エッジネイティブ人工知能(AI))は、AI、通信ネットワーク、モバイルエッジコンピューティングのシームレスな統合に焦点を当てた新興技術フレームワークである。
本稿では、6GにおけるエッジネイティブAIの重要な要件と課題を特定する。
論文 参考訳(メタデータ) (2020-10-01T02:16:40Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
超信頼性・低レイテンシ通信(URLLC)は、様々な新しいミッションクリティカルなアプリケーションの開発の中心となる。
ディープラーニングアルゴリズムは、将来の6GネットワークでURLLCを実現する技術を開発するための有望な方法と考えられている。
このチュートリアルでは、URLLCのさまざまなディープラーニングアルゴリズムにドメイン知識を組み込む方法について説明する。
論文 参考訳(メタデータ) (2020-09-13T14:53:01Z) - Federated Learning for 6G Communications: Challenges, Methods, and
Future Directions [71.31783903289273]
6Gとフェデレーション学習の統合を導入し、6Gのための潜在的なフェデレーション学習アプリケーションを提供する。
6G通信の文脈において,重要な技術的課題,それに対応するフェデレーション学習手法,および今後のフェデレーション学習研究のためのオープンな課題について述べる。
論文 参考訳(メタデータ) (2020-06-04T15:17:19Z) - Redefining Wireless Communication for 6G: Signal Processing Meets Deep
Learning with Deep Unfolding [17.186326961526994]
提案する6G通信アーキテクチャがもたらすサービス要件と課題について述べる。
従来のアルゴリズムの原則とデータに精通したディープラーニングアプローチの欠陥について概説する。
本稿では,将来の6Gネットワークにおいて,ハードウェア効率の高いエッジインテリジェンスを実現するためのオープンな研究課題を動機づける。
論文 参考訳(メタデータ) (2020-04-22T17:20:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。