論文の概要: Beyond 5G Networks: Integration of Communication, Computing, Caching,
and Control
- arxiv url: http://arxiv.org/abs/2212.13141v1
- Date: Mon, 26 Dec 2022 12:58:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 15:42:39.409987
- Title: Beyond 5G Networks: Integration of Communication, Computing, Caching,
and Control
- Title(参考訳): 5gネットワークを超えて:コミュニケーション、コンピューティング、キャッシング、制御の統合
- Authors: Musbahu Mohammed Adam, Liqiang Zhao, Kezhi Wang, and Zhu Han
- Abstract要約: まず、i4Cのさまざまな側面のスナップショットを示し、背景、モチベーション、主要な技術イネーブラー、潜在的なアプリケーション、ユースケースで構成されています。
我々は、i4Cに関連する最先端の研究成果を概観し、従来型と人工知能(AI)ベースの統合アプローチの最近の動向に注目した。
最後に,6Gなどの5Gネットワークを超えて,オープンな課題と今後の研究方向性を提案する。
- 参考スコア(独自算出の注目度): 76.13180570097299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the exponential proliferation of smart devices with their
intelligent applications poses severe challenges on conventional cellular
networks. Such challenges can be potentially overcome by integrating
communication, computing, caching, and control (i4C) technologies. In this
survey, we first give a snapshot of different aspects of the i4C, comprising
background, motivation, leading technological enablers, potential applications,
and use cases. Next, we describe different models of communication, computing,
caching, and control (4C) to lay the foundation of the integration approach. We
review current state-of-the-art research efforts related to the i4C, focusing
on recent trends of both conventional and artificial intelligence (AI)-based
integration approaches. We also highlight the need for intelligence in
resources integration. Then, we discuss integration of sensing and
communication (ISAC) and classify the integration approaches into various
classes. Finally, we propose open challenges and present future research
directions for beyond 5G networks, such as 6G.
- Abstract(参考訳): 近年,知的応用によるスマートデバイスの急激な普及は,従来のセルネットワークに深刻な課題をもたらしている。
このような課題は、通信、コンピューティング、キャッシング、制御(i4c)技術を統合することで克服できる。
本調査ではまず,i4Cの背景,モチベーション,先導技術イネーブラー,潜在的な応用,ユースケースなど,さまざまな側面のスナップショットを提示する。
次に、コミュニケーション、コンピューティング、キャッシュ、制御(4C)のさまざまなモデルを説明し、統合アプローチの基礎を定めます。
我々は、i4Cに関連する最先端の研究成果を概観し、従来型と人工知能(AI)ベースの統合アプローチの最近の動向に注目した。
リソース統合におけるインテリジェンスの必要性も強調します。
そこで我々は、ISACの統合について論じ、その統合アプローチを様々なクラスに分類する。
最後に,6Gなどの5Gネットワークを超えて,オープンな課題と今後の研究方向性を提案する。
関連論文リスト
- A Survey on Integrated Sensing, Communication, and Computation [57.6762830152638]
次世代のワイヤレス技術である6Gは、ユビキタスなインテリジェントサービスの時代を後押しすることを目指している。
これらのモジュールのパフォーマンスは相互依存しており、時間、エネルギー、帯域幅のリソース競争を生み出している。
統合通信と計算(ICC)、統合センシングと計算(ISC)、統合センシングと通信(ISAC)といった既存の技術は、この課題に対処するために部分的に進歩してきた。
論文 参考訳(メタデータ) (2024-08-15T11:01:35Z) - Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration [56.330705072736166]
基礎モデルに基づく6GネイティブAIフレームワークを提案し、意図認識型PFMのカスタマイズアプローチを提供し、新しいクラウド-エッジコラボレーションパラダイムを概説する。
実例として,無線通信システムにおける最大和率を達成するために,このフレームワークをオーケストレーションに適用する。
論文 参考訳(メタデータ) (2023-10-26T15:19:40Z) - A Comprehensive Study on Artificial Intelligence Algorithms to Implement
Safety Using Communication Technologies [1.2710179245406195]
この研究は、異なるコミュニケーション技術を使用するAIベースの安全ソリューションの現状を包括的に把握することを目的としている。
その結果、安全を実装するためにAIとコミュニケーションを最も活用しているのは自動車ドメインであることが示された。
携帯電話以外の通信技術の利用が主流であるが、2020年からは5G技術の展開に伴い、携帯電話通信の利用が急速に増加する傾向が観察されている。
論文 参考訳(メタデータ) (2022-05-17T14:38:38Z) - Artificial Intelligence for Satellite Communication: A Review [91.3755431537592]
この研究は、AI、その多様なサブフィールド、そして最先端のアルゴリズムの概要を提供する。
さまざまな衛星通信分野へのAIの適用は、ビームホッピング、アンチジャミング、ネットワークトラフィック予測、チャネルモデリング、テレメトリマイニング、電離圏シンチレーション検出、干渉管理、リモートセンシング、行動モデリング、スペースエアグラウンド統合、エネルギー管理など、優れた可能性を実証しています。
論文 参考訳(メタデータ) (2021-01-25T13:01:16Z) - Towards Self-learning Edge Intelligence in 6G [143.1821636135413]
エッジインテリジェンス(エッジインテリジェンス、Edge Intelligence、別名エッジネイティブ人工知能(AI))は、AI、通信ネットワーク、モバイルエッジコンピューティングのシームレスな統合に焦点を当てた新興技術フレームワークである。
本稿では、6GにおけるエッジネイティブAIの重要な要件と課題を特定する。
論文 参考訳(メタデータ) (2020-10-01T02:16:40Z) - Swarm Intelligence for Next-Generation Wireless Networks: Recent
Advances and Applications [39.38804488121544]
Swarm Intelligence(SI)は、無線ネットワークのための有望な最適化ツールとして最近登場した。
本稿では,基本的な概念からよく知られた概念まで,SI技術の概要を紹介する。
次世代無線ネットワークにおける新たな課題を解決するためのSIの応用を概観する。
論文 参考訳(メタデータ) (2020-07-30T04:32:49Z) - Federated Learning for 6G Communications: Challenges, Methods, and
Future Directions [71.31783903289273]
6Gとフェデレーション学習の統合を導入し、6Gのための潜在的なフェデレーション学習アプリケーションを提供する。
6G通信の文脈において,重要な技術的課題,それに対応するフェデレーション学習手法,および今後のフェデレーション学習研究のためのオープンな課題について述べる。
論文 参考訳(メタデータ) (2020-06-04T15:17:19Z) - Communication-Efficient Edge AI: Algorithms and Systems [39.28788394839187]
エッジデバイス(IoTデバイスなど)の大規模展開は、前例のない規模のデータを生成する。
このような巨大なデータはすべて、処理のためにエンドデバイスからクラウドに送信することはできない。
AIモデルの推論とトレーニングプロセスをエッジノードにプッシュすることで、エッジAIは有望な代替手段として浮上した。
論文 参考訳(メタデータ) (2020-02-22T09:27:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。