論文の概要: Learning Perception-Aware Agile Flight in Cluttered Environments
- arxiv url: http://arxiv.org/abs/2210.01841v1
- Date: Tue, 4 Oct 2022 18:18:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-06 14:45:52.004568
- Title: Learning Perception-Aware Agile Flight in Cluttered Environments
- Title(参考訳): クラッタ環境における知覚を学習するアジャイルフライト
- Authors: Yunlong Song, Kexin Shi, Robert Penicka, and Davide Scaramuzza
- Abstract要約: 乱雑な環境下での知覚に敏感で最小時間飛行を実現するニューラルネットワークポリシーを学習する手法を提案する。
提案手法は認識と制御を密に結合し,計算速度(10倍高速)と成功率に有意な優位性を示す。
本研究では, クローズドループ制御性能を最大50km/hの速さで実機とハードウェア・イン・ザ・ループシミュレーションを用いて実証する。
- 参考スコア(独自算出の注目度): 38.59659342532348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, neural control policies have outperformed existing model-based
planning-and-control methods for autonomously navigating quadrotors through
cluttered environments in minimum time. However, they are not perception aware,
a crucial requirement in vision-based navigation due to the camera's limited
field of view and the underactuated nature of a quadrotor. We propose a method
to learn neural network policies that achieve perception-aware, minimum-time
flight in cluttered environments. Our method combines imitation learning and
reinforcement learning (RL) by leveraging a privileged learning-by-cheating
framework. Using RL, we first train a perception-aware teacher policy with
full-state information to fly in minimum time through cluttered environments.
Then, we use imitation learning to distill its knowledge into a vision-based
student policy that only perceives the environment via a camera. Our approach
tightly couples perception and control, showing a significant advantage in
computation speed (10x faster) and success rate. We demonstrate the closed-loop
control performance using a physical quadrotor and hardware-in-the-loop
simulation at speeds up to 50km/h.
- Abstract(参考訳): 近年、ニューラルコントロールポリシは、散らばった環境を最小時間で自律的にナビゲートする既存のモデルベースプランニング・アンド・コントロール手法よりも優れています。
しかし、カメラの視野が限られており、四角子の性質が不活性化しているため、視覚ベースのナビゲーションにおける重要な要件は認識されていない。
乱雑な環境下での知覚に敏感で最小時間飛行を実現するニューラルネットワークポリシーを学習する手法を提案する。
本手法は,模擬学習と強化学習(RL)を組み合わせて,特権学習の枠組みを活用する。
rlを用いて,完全な状態情報を含む知覚認識型教師ポリシーを学習し,混乱した環境中を最小時間飛行する。
次に、模倣学習を用いて、その知識を、カメラを通して環境を知覚するだけの視覚ベースの学生ポリシーに絞り込む。
我々のアプローチは知覚と制御を密に結合し、計算速度(10倍)と成功率に大きな利点を示します。
本研究では, クローズドループ制御性能を最大50km/hの速さで実演する。
関連論文リスト
- Bootstrapping Reinforcement Learning with Imitation for Vision-Based Agile Flight [20.92646531472541]
本稿では,Reinforcement Learning(RL)とImitation Learning(IL)のサンプル効率を組み合わせた新しいアプローチを提案する。
本フレームワークは、RLを用いた3段階の教員政策と、ILによる学生政策に蒸留する特権状態情報と、RLによる適応微調整とを含む。
テストでは、スクラッチからRLが失敗するシナリオだけでなく、ロバストさとパフォーマンスの両方で既存のILメソッドよりも優れています。
論文 参考訳(メタデータ) (2024-03-18T19:25:57Z) - Learning Speed Adaptation for Flight in Clutter [3.8876619768726157]
動物は自分の運動の速度を自分の能力や観察する環境に適応させることを学ぶ。
モバイルロボットはまた、タスクを効率的に達成するための攻撃性と安全性をトレードオフする能力を示す必要がある。
この研究は、未知の、部分的に観測可能な乱雑な環境において、速度適応の能力を持つ飛行車両を養うことを目的としている。
論文 参考訳(メタデータ) (2024-03-07T15:30:54Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - Learning Deep Sensorimotor Policies for Vision-based Autonomous Drone
Racing [52.50284630866713]
既存のシステムは、状態推定、計画、制御のために手作業によるコンポーネントを必要とすることが多い。
本稿では、深層感触者ポリシーを学習することで、視覚に基づく自律ドローンレース問題に取り組む。
論文 参考訳(メタデータ) (2022-10-26T19:03:17Z) - A Walk in the Park: Learning to Walk in 20 Minutes With Model-Free
Reinforcement Learning [86.06110576808824]
深層強化学習は、制御されていない環境での学習ポリシーに対する有望なアプローチである。
機械学習アルゴリズムとライブラリの最近の進歩と、慎重に調整されたロボットコントローラを組み合わせることで、現実世界では4分で学習できる。
論文 参考訳(メタデータ) (2022-08-16T17:37:36Z) - Learning High-Speed Flight in the Wild [101.33104268902208]
複雑な自然環境や人工環境を高速で自律的に飛行するエンド・ツー・エンドのアプローチを提案する。
鍵となる原理は、雑音の知覚観測を直接、後退水平方向に無衝突軌道にマッピングすることである。
現実的なセンサノイズをシミュレートすることにより,シミュレーションから現実環境へのゼロショット転送を実現する。
論文 参考訳(メタデータ) (2021-10-11T09:43:11Z) - Learning a State Representation and Navigation in Cluttered and Dynamic
Environments [6.909283975004628]
本稿では,四足ロボットによる局所ナビゲーションを実現するための学習ベースのパイプラインを提案する。
ロボットは、環境を明示的にマッピングすることなく、奥行きカメラのフレームに基づいて、安全な場所へ移動することができる。
本システムでは,ノイズの多い奥行き画像の処理が可能であり,訓練中の動的障害物を回避でき,局所的な空間意識を付与できることを示す。
論文 参考訳(メタデータ) (2021-03-07T13:19:06Z) - ViNG: Learning Open-World Navigation with Visual Goals [82.84193221280216]
視覚的目標達成のための学習に基づくナビゲーションシステムを提案する。
提案手法は,我々がvingと呼ぶシステムが,目標条件強化学習のための提案手法を上回っていることを示す。
我々は、ラストマイル配送や倉庫検査など、現実の多くのアプリケーションでViNGを実演する。
論文 参考訳(メタデータ) (2020-12-17T18:22:32Z) - Robot Perception enables Complex Navigation Behavior via Self-Supervised
Learning [23.54696982881734]
本稿では、強化学習(RL)によるアクティブな目標駆動ナビゲーションタスクのためのロボット認識システムの統合手法を提案する。
提案手法は,1つの画像列から直接自己スーパービジョンを用いて得られる,コンパクトな動きと視覚知覚データを時間的に組み込む。
我々は,新しいインタラクティブなCityLearnフレームワークを用いて,実世界の運転データセットであるKITTIとOxford RobotCarのアプローチを実証した。
論文 参考訳(メタデータ) (2020-06-16T07:45:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。