Mixed Quantum-Classical Method For Fraud Detection with Quantum Feature
Selection
- URL: http://arxiv.org/abs/2208.07963v1
- Date: Tue, 16 Aug 2022 21:46:04 GMT
- Title: Mixed Quantum-Classical Method For Fraud Detection with Quantum Feature
Selection
- Authors: Michele Grossi, Noelle Ibrahim, Voica Radescu, Robert Loredo, Kirsten
Voigt, Constantin Von Altrock, and Andreas Rudnik
- Abstract summary: A new method to search for best features is explored using the Quantum Support Vector Machine's feature map characteristics.
A hybrid classical-quantum approach is explored by using an ensemble model that combines classical and quantum algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a first end-to-end application of a Quantum Support
Vector Machine (QSVM) algorithm for a classification problem in the financial
payment industry using the IBM Safer Payments and IBM Quantum Computers via the
Qiskit software stack. Based on real card payment data, a thorough comparison
is performed to assess the complementary impact brought in by the current
state-of-the-art Quantum Machine Learning algorithms with respect to the
Classical Approach. A new method to search for best features is explored using
the Quantum Support Vector Machine's feature map characteristics. The results
are compared using fraud specific key performance indicators: Accuracy, Recall,
and False Positive Rate, extracted from analyses based on human expertise (rule
decisions), classical machine learning algorithms (Random Forest, XGBoost) and
quantum based machine learning algorithms using QSVM. In addition, a hybrid
classical-quantum approach is explored by using an ensemble model that combines
classical and quantum algorithms to better improve the fraud prevention
decision. We found, as expected, that the results highly depend on feature
selections and algorithms that are used to select them. The QSVM provides a
complementary exploration of the feature space which led to an improved
accuracy of the mixed quantum-classical method for fraud detection, on a
drastically reduced data set to fit current state of Quantum Hardware.
Related papers
- Quantum Phases Classification Using Quantum Machine Learning with SHAP-Driven Feature Selection [0.0]
We present an innovative methodology to classify quantum phases within the ANNNI (Axial Next-Nearest Neighbor Ising) model.
Our investigation focuses on two prominent QML algorithms: Quantum Support Vector (QSVM) and Variational Quantums (VQC)
The results reveal that both QSVM and VQC exhibit exceptional predictive accuracy when limited to 5 or 6 key features.
arXiv Detail & Related papers (2025-04-14T19:51:26Z) - Quantum autoencoders for image classification [0.0]
Quantum autoencoders (QAEs) leverage classical optimization solely for parameter tuning.
QAEs can serve as efficient classification models with fewer parameters and highlight the potential of utilizing quantum circuits for complete end-to-end learning.
arXiv Detail & Related papers (2025-02-21T07:13:38Z) - Benchmarking Variational Quantum Eigensolvers for Entanglement Detection in Many-Body Hamiltonian Ground States [37.69303106863453]
Variational quantum algorithms (VQAs) have emerged in recent years as a promise to obtain quantum advantage.
We use a specific class of VQA named variational quantum eigensolvers (VQEs) to benchmark them at entanglement witnessing and entangled ground state detection.
Quantum circuits whose structure is inspired by the Hamiltonian interactions presented better results on cost function estimation than problem-agnostic circuits.
arXiv Detail & Related papers (2024-07-05T12:06:40Z) - Hybrid Quantum-Classical Machine Learning with String Diagrams [49.1574468325115]
This paper develops a formal framework for describing hybrid algorithms in terms of string diagrams.
A notable feature of our string diagrams is the use of functor boxes, which correspond to a quantum-classical interfaces.
arXiv Detail & Related papers (2024-07-04T06:37:16Z) - Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices [0.0]
This study explores the intersection of quantum computing and Machine Learning (ML)
It evaluates the effectiveness of hybrid quantum-classical algorithms, such as the data re-uploading scheme and the patch Generative Adversarial Networks (GAN) model, on small-scale quantum devices.
arXiv Detail & Related papers (2024-04-01T20:55:03Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - A preprocessing perspective for quantum machine learning classification
advantage using NISQ algorithms [0.0]
Variational Quantum Algorithm (VQA) shows a gain of performance in balanced accuracy with the LDA technique.
Current quantum computers are noisy and have few qubits to test, making it difficult to demonstrate the current and potential quantum advantage of QML methods.
arXiv Detail & Related papers (2022-08-28T16:58:37Z) - Identification of topological phases using classically-optimized
variational quantum eigensolver [0.6181093777643575]
Variational quantum eigensolver (VQE) is regarded as a promising candidate of hybrid quantum-classical algorithm for quantum computers.
We propose classically-optimized VQE (co-VQE), where the whole process of the optimization is efficiently conducted on a classical computer.
In co-VQE, we only use quantum computers to measure nonlocal quantities after the parameters are optimized.
arXiv Detail & Related papers (2022-02-07T02:26:58Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
We show a possible solution to facial expression recognition using a quantum machine learning approach.
We define a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states.
arXiv Detail & Related papers (2021-02-09T13:48:00Z) - Quantum Machine Learning for Particle Physics using a Variational
Quantum Classifier [0.0]
We propose a novel hybrid variational quantum classifier that combines the quantum gradient descent method with steepest gradient descent to optimise the parameters of the network.
We find that this algorithm has a better learning outcome than a classical neural network or a quantum machine learning method trained with a non-quantum optimisation method.
arXiv Detail & Related papers (2020-10-14T18:05:49Z) - QEML (Quantum Enhanced Machine Learning): Using Quantum Computing to
Enhance ML Classifiers and Feature Spaces [0.49841205356595936]
Machine learning and quantum computing are causing a paradigm shift in the performance and behavior of certain algorithms.
This paper first understands the mathematical intuition for the implementation of quantum feature space.
We build a noisy variational quantum circuit KNN which mimics the classification methods of a traditional KNN.
arXiv Detail & Related papers (2020-02-22T04:14:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.