論文の概要: Deep Learning-Based Discrete Calibrated Survival Prediction
- arxiv url: http://arxiv.org/abs/2208.08182v1
- Date: Wed, 17 Aug 2022 09:40:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-18 12:22:02.197006
- Title: Deep Learning-Based Discrete Calibrated Survival Prediction
- Title(参考訳): 深層学習に基づく離散校正生存予測
- Authors: Patrick Fuhlert, Anne Ernst, Esther Dietrich, Fabian Westhaeusser,
Karin Kloiber, Stefan Bonn
- Abstract要約: 本稿では,識別・校正型生存予測のための新しいディープニューラルネットワークである離散校正サバイバル(DCS)を提案する。
DCSの高機能化は、可変時間出力ノード間隔と新しい損失項という2つの新しい特徴に起因している。
我々は、DCSが、最先端の差別と良好な校正によるディープラーニングに基づく生存予測の臨床的応用に向けた重要なステップであると考えている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks for survival prediction outper-form classical approaches
in discrimination, which is the ordering of patients according to their
time-of-event. Conversely, classical approaches like the Cox Proportional
Hazards model display much better calibration, the correct temporal prediction
of events of the underlying distribution. Especially in the medical domain,
where it is critical to predict the survival of a single patient, both
discrimination and calibration are important performance metrics. Here we
present Discrete Calibrated Survival (DCS), a novel deep neural network for
discriminated and calibrated survival prediction that outperforms competing
survival models in discrimination on three medical datasets, while achieving
best calibration among all discrete time models. The enhanced performance of
DCS can be attributed to two novel features, the variable temporal output node
spacing and the novel loss term that optimizes the use of uncensored and
censored patient data. We believe that DCS is an important step towards
clinical application of deep-learning-based survival prediction with
state-of-the-art discrimination and good calibration.
- Abstract(参考訳): 生存予測のためのディープニューラルネットワークは、患者がイベントの時間に応じて順序付けする従来のアプローチよりも優れている。
逆に、Cox Proportional Hazardsモデルのような古典的なアプローチは、基礎となる分布の事象の正しい時間的予測よりもはるかに優れたキャリブレーションを示す。
特に1人の患者の生存を予測することが重要である医療領域では、判別と校正の両方が重要なパフォーマンス指標である。
本稿では、3つの医療データセットの識別において、競合する生存モデルよりも優れ、全ての離散時間モデルにおいて最高の校正を達成できる、識別および校正された生存予測のための新しいディープニューラルネットワークであるdisteed calibrated survival (dcs)を提案する。
DCSの性能向上は、変動時間出力ノード間隔と、非検閲および検閲された患者データの使用を最適化する新規損失項の2つの特徴に起因している。
我々は、DCSが、最先端の差別と良好な校正による深層学習に基づく生存予測の臨床的応用に向けた重要なステップであると考えている。
関連論文リスト
- SurvCORN: Survival Analysis with Conditional Ordinal Ranking Neural Network [4.772480981435387]
本稿では,条件付き順序付きランキングネットワークを用いた生存曲線の予測手法であるSurvCORNを提案する。
また,モデル予測の精度を評価するための指標であるSurvMAEを導入する。
論文 参考訳(メタデータ) (2024-09-30T03:01:25Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Towards Clinician-Preferred Segmentation: Leveraging Human-in-the-Loop for Test Time Adaptation in Medical Image Segmentation [10.65123164779962]
深層学習に基づく医療画像セグメンテーションモデルは、様々な医療センターに展開すると、しばしば性能劣化に直面します。
本稿では,クリニカル修正予測のほとんど見落とされがちな可能性を生かした,新規なHuman-in-the-loop TTAフレームワークを提案する。
我々のフレームワークは、ドメインの格差によって生じる予測のばらつきを減らし、分散損失を想定する。
論文 参考訳(メタデータ) (2024-05-14T02:02:15Z) - Conditional Score-Based Diffusion Model for Cortical Thickness
Trajectory Prediction [29.415616701032604]
アルツハイマー病(英: Alzheimer's Disease、AD)は、個人間での進行率の多様性を特徴とする神経変性疾患である。
与えられたベースライン情報を用いてCThトラジェクトリを生成する条件付きスコアベース拡散モデルを提案する。
本モデルでは6~36ヶ月のCThに比べて95%間隔が狭いほぼゼロバイアスを有する。
論文 参考訳(メタデータ) (2024-03-11T17:26:18Z) - HypUC: Hyperfine Uncertainty Calibration with Gradient-boosted
Corrections for Reliable Regression on Imbalanced Electrocardiograms [3.482894964998886]
本稿では,医療時系列における不均衡確率回帰の枠組みであるHypUCを提案する。
HypUCは数百万の患者から収集された、多様で現実世界のECGデータセットで評価されている。
論文 参考訳(メタデータ) (2023-11-23T06:17:31Z) - Density-Aware Personalized Training for Risk Prediction in Imbalanced
Medical Data [89.79617468457393]
不均衡率(クラス密度差)のトレーニングモデルは、最適以下の予測につながる可能性がある。
この不均衡問題に対するモデルトレーニングのためのフレームワークを提案する。
実世界の医療データセットにおけるモデルの性能向上を実証する。
論文 参考訳(メタデータ) (2022-07-23T00:39:53Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
本稿では,ニューラルネットワークの本質的特性を活用し,生存分析モデルの訓練過程を関連づける。
小さな医療データセットと少数のデータセンターの現実的な設定では、このノイズはモデルを収束させるのが難しくなります。
DPFed-post は,私的フェデレート学習方式に後処理の段階を追加する。
論文 参考訳(メタデータ) (2022-02-08T10:03:24Z) - Differentially private training of neural networks with Langevin
dynamics forcalibrated predictive uncertainty [58.730520380312676]
その結果,DP-SGD(差分偏差勾配勾配勾配勾配勾配)は,低校正・過信深層学習モデルが得られることがわかった。
これは、医療診断など、安全クリティカルな応用にとって深刻な問題である。
論文 参考訳(メタデータ) (2021-07-09T08:14:45Z) - Dynamic prediction of time to event with survival curves [3.9169188005935927]
最近開発した反実用動的生存モデル(CDSM)を静的および縦方向の観測データに適用します。
評価された個別生存曲線の反射点が、患者の失敗時間の確実な予測をもたらすことを証明した。
論文 参考訳(メタデータ) (2021-01-26T12:17:27Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。