論文の概要: "Task-relevant autoencoding" enhances machine learning for human
neuroscience
- arxiv url: http://arxiv.org/abs/2208.08478v2
- Date: Fri, 22 Sep 2023 17:04:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-25 19:47:10.798982
- Title: "Task-relevant autoencoding" enhances machine learning for human
neuroscience
- Title(参考訳): タスク関連オートエンコーディング」は人間の神経科学のための機械学習を強化する
- Authors: Seyedmehdi Orouji, Vincent Taschereau-Dumouchel, Aurelio Cortese,
Brian Odegaard, Cody Cushing, Mouslim Cherkaoui, Mitsuo Kawato, Hakwan Lau,
and Megan A. K. Peters
- Abstract要約: 人間の神経科学において、機械学習は被験者の行動に関連する低次元の神経表現を明らかにするのに役立つ。
本研究では,機能拡張(TRACE)によるタスク関連オートエンコーダを開発し,その動作関連表現を抽出する能力を検証した。
TRACEは全てのモデルをほぼ一方的に上回り、分類精度は最大12%向上し、タスク関連表現の発見において最大56%改善した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In human neuroscience, machine learning can help reveal lower-dimensional
neural representations relevant to subjects' behavior. However,
state-of-the-art models typically require large datasets to train, so are prone
to overfitting on human neuroimaging data that often possess few samples but
many input dimensions. Here, we capitalized on the fact that the features we
seek in human neuroscience are precisely those relevant to subjects' behavior.
We thus developed a Task-Relevant Autoencoder via Classifier Enhancement
(TRACE), and tested its ability to extract behaviorally-relevant, separable
representations compared to a standard autoencoder, a variational autoencoder,
and principal component analysis for two severely truncated machine learning
datasets. We then evaluated all models on fMRI data from 59 subjects who
observed animals and objects. TRACE outperformed all models nearly
unilaterally, showing up to 12% increased classification accuracy and up to 56%
improvement in discovering "cleaner", task-relevant representations. These
results showcase TRACE's potential for a wide variety of data related to human
behavior.
- Abstract(参考訳): 人間の神経科学において、機械学習は被験者の行動に関連する低次元の神経表現を明らかにするのに役立つ。
しかし、最先端のモデルは訓練に大規模なデータセットを必要とするため、しばしばサンプルが少ないが多くの入力次元を持つヒトの神経画像データに過度に適合する傾向がある。
ここでは、人間の神経科学で探す特徴が、被験者の行動に正確に関連しているという事実を生かした。
そこで我々は,TRACEを用いたタスク関連オートエンコーダを開発し,従来のオートエンコーダ,変分オートエンコーダ,および2つの重く切り詰められた機械学習データセットに対する主成分分析と比較して,行動関連で分離可能な表現を抽出する能力を検証した。
動物や物体を観察した59名の被験者のfMRIデータから,すべてのモデルを評価する。
TRACEは全てのモデルをほぼ一方的に上回り、分類精度は最大12%向上し、タスク関連表現の発見において最大56%改善した。
これらの結果は、人間の行動に関連する幅広いデータに対するトレースの可能性を示している。
関連論文リスト
- Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
最先端のシステム神経科学実験は大規模なマルチモーダルデータを生み出し、これらのデータセットは分析のための新しいツールを必要とする。
視覚領域と言語領域における大きな事前学習モデルの成功に触発されて、我々は大規模な細胞分解性神経スパイクデータの解析を自己回帰生成問題に再構成した。
我々はまず、シミュレーションデータセットでNeuroformerを訓練し、本質的なシミュレートされた神経回路の動作を正確に予測し、方向を含む基盤となる神経回路の接続性を推定した。
論文 参考訳(メタデータ) (2023-10-31T20:17:32Z) - Reducing Intraspecies and Interspecies Covariate Shift in Traumatic
Brain Injury EEG of Humans and Mice Using Transfer Euclidean Alignment [4.264615907591813]
被験者間の高いばらつきは、現実世界の分類タスクのための機械学習モデルをデプロイすることに関して、大きな課題となる。
そのような場合、特定のデータセットで例外的なパフォーマンスを示す機械学習モデルは、同じタスクに対して異なるデータセットに適用した場合、必ずしも同様の習熟度を示すとは限らない。
本稿では,人間の生体医学的データの堅牢性に対処し,深層学習モデルの訓練を行うトランスファーユークリッドアライメントについて紹介する。
論文 参考訳(メタデータ) (2023-10-03T19:48:02Z) - Bayesian Time-Series Classifier for Decoding Simple Visual Stimuli from
Intracranial Neural Activity [0.0]
本稿では,ハイレベルな解釈性を維持しつつ,課題に対処する簡易なベイズ時系列分類器(BTsC)モデルを提案する。
視覚的タスクにおける色をデコードするためにニューラルネットワークを利用することで、このアプローチの分類能力を実証する。
提案手法は,様々なタスクで記録されたニューラルデータに適用可能である。
論文 参考訳(メタデータ) (2023-07-28T17:04:06Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
このコントリビューションは、トレーニングデータを統計的にキュレートし、人間の身体的特性がHARのパフォーマンスにどの程度影響するかを評価する。
時系列HARのセンサ,アクティビティ,記録の異なる2つのHARデータセット上で,最先端の畳み込みニューラルネットワークの性能を評価する。
論文 参考訳(メタデータ) (2023-01-19T12:33:50Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3Dポーズデータは、手動で介入することなく、マルチビュービデオシーケンスから確実に抽出できる。
本稿では,ニューラルアクション表現の符号化を,ニューラルアクションと行動拡張のセットと共に導くために使用することを提案する。
ドメインギャップを減らすために、トレーニングの間、同様の行動をしているように見える動物間で神経と行動のデータを取り替える。
論文 参考訳(メタデータ) (2021-12-02T12:45:46Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Evaluating deep transfer learning for whole-brain cognitive decoding [11.898286908882561]
転送学習(TL)は、少数のサンプルを持つデータセットにおける深層学習(DL)モデルの性能向上に適している。
本稿では,全脳機能型磁気共鳴画像(fMRI)データから認識状態の復号化にDLモデルを適用するためのTLを評価した。
論文 参考訳(メタデータ) (2021-11-01T15:44:49Z) - Where is my hand? Deep hand segmentation for visual self-recognition in
humanoid robots [129.46920552019247]
本稿では、画像からロボットの手を切り離すための畳み込みニューラルネットワーク(CNN)を提案する。
ヒューマノイドロボットVizzyの手のセグメンテーションのために,Mask-RCNNネットワークを微調整した。
論文 参考訳(メタデータ) (2021-02-09T10:34:32Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
実世界のデータの解釈可能な非冗長表現を見つけることは、機械学習の鍵となる問題の一つである。
本稿では,オートエンコーダのトレーニングにデータ拡張を利用する新しい手法を提案する。
このような方法で変分オートエンコーダを訓練し、補助ネットワークによって変換結果を予測できるようにする。
論文 参考訳(メタデータ) (2020-10-10T14:04:44Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
世界との相互作用から予測モデルを学ぶことで、ロボットのようなエージェントが世界がどのように働くかを学ぶことができる。
しかし、複雑なスキルのダイナミクスを捉えるモデルを学ぶことは大きな課題である。
本研究では,人間などの他のエージェントの観察データを用いて,トレーニングセットを増強する手法を提案する。
論文 参考訳(メタデータ) (2019-12-30T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。