論文の概要: End-to-end Clinical Event Extraction from Chinese Electronic Health
Record
- arxiv url: http://arxiv.org/abs/2208.09354v1
- Date: Fri, 19 Aug 2022 14:06:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-22 16:35:39.653544
- Title: End-to-end Clinical Event Extraction from Chinese Electronic Health
Record
- Title(参考訳): 中国電子健康記録からのエンドツーエンド臨床イベント抽出
- Authors: Wei Feng and Ruochen Huang and Yun Yu and Huiting Sun and Yun Liu
- Abstract要約: 我々は、イベントの出力フォーマット情報を強化するために、エンドツーエンドのイベント抽出モデルを使用します。
精度は0.4511、リコール率は0.3928、F1値は0.42である。
- 参考スコア(独自算出の注目度): 8.88532379915105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event extraction is an important work of medical text processing. According
to the complex characteristics of medical text annotation, we use the
end-to-end event extraction model to enhance the output formatting information
of events. Through pre training and fine-tuning, we can extract the attributes
of the four dimensions of medical text: anatomical position, subject word,
description word and occurrence state. On the test set, the accuracy rate was
0.4511, the recall rate was 0.3928, and the F1 value was 0.42. The method of
this model is simple, and it has won the second place in the task of mining
clinical discovery events (task2) in the Chinese electronic medical record of
the seventh China health information processing Conference (chip2021).
- Abstract(参考訳): イベント抽出は医療用テキスト処理の重要な仕事である。
医用テキストアノテーションの複雑な特性により,イベントの出力フォーマット情報を強化するために,エンドツーエンドのイベント抽出モデルを用いる。
事前訓練と微調整により,医学文献の4次元(解剖学的位置,主語,記述語,発生状態)の属性を抽出できる。
テストセットでは、精度は0.4511、リコール率は0.3928、F1値は0.42だった。
このモデルの方法は単純であり、第7回中国健康情報処理会議(chip2021)の中国電子カルテにおいて、臨床発見イベント(task2)の採掘作業で2位を獲得している。
関連論文リスト
- Detecting automatically the layout of clinical documents to enhance the
performances of downstream natural language processing [53.797797404164946]
我々は,臨床用PDF文書を処理し,臨床用テキストのみを抽出するアルゴリズムを設計した。
このアルゴリズムは、PDFを使った最初のテキスト抽出と、続いてボディテキスト、左書き、フッタなどのカテゴリに分類される。
それぞれのセクションのテキストから興味ある医学的概念を抽出し,医療的パフォーマンスを評価した。
論文 参考訳(メタデータ) (2023-05-23T08:38:33Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
本稿では,Re$3$Writer法を提案する。
本手法が患者の退院指示生成に有効であることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:34:39Z) - Exploring Optimal Granularity for Extractive Summarization of
Unstructured Health Records: Analysis of the Largest Multi-Institutional
Archive of Health Records in Japan [25.195233641408233]
「処分要約」は要約の有望な応用の1つである。
要約が構造されていないソースからどのように生成されるべきかは、まだ不明である。
本研究は,要約における最適粒度を同定することを目的とした。
論文 参考訳(メタデータ) (2022-09-20T23:26:02Z) - Few-Shot Cross-lingual Transfer for Coarse-grained De-identification of
Code-Mixed Clinical Texts [56.72488923420374]
事前学習型言語モデル (LM) は低リソース環境下での言語間移動に大きな可能性を示している。
脳卒中におけるコードミキシング(スペイン・カタラン)臨床ノートの低リソース・実世界の課題を解決するために,NER (name recognition) のためのLMの多言語間転写特性を示す。
論文 参考訳(メタデータ) (2022-04-10T21:46:52Z) - A Unified Framework of Medical Information Annotation and Extraction for
Chinese Clinical Text [1.4841452489515765]
現在の最先端(SOTA)NLPモデルは、ディープラーニング技術と高度に統合されている。
本研究では,医学的実体認識,関係抽出,属性抽出の工学的枠組みを提案する。
論文 参考訳(メタデータ) (2022-03-08T03:19:16Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
本稿では,単語の単純化と言語モデリングに基づく医療用テキストの自動作成手法を提案する。
我々は,公開医療文のデータセットペアと,臨床医による簡易化版を用いている。
本手法は,医学フォーラムデータに基づく言語モデルを用いて,文法と本来の意味の両方を保存しながら,より単純な文を生成する。
論文 参考訳(メタデータ) (2021-12-23T16:11:19Z) - Rationale production to support clinical decision-making [31.66739991129112]
本稿では,病院の退院予測にInfoCalを適用した。
選択された解釈可能性を持つ各提示モデルや特徴重要度法は,それぞれ異なる結果をもたらす。
論文 参考訳(メタデータ) (2021-11-15T09:02:10Z) - Medical-VLBERT: Medical Visual Language BERT for COVID-19 CT Report
Generation With Alternate Learning [70.71564065885542]
本稿では,医療用ビジュアル言語BERT(Medical-VLBERT)モデルを用いて,新型コロナウイルススキャンの異常を同定する。
このモデルは、知識事前学習と伝達の2つの手順で、代替的な学習戦略を採用する。
COVID-19患者に対する医療報告の自動作成のために,中国語で368例,胸部CTで1104例の検診を行った。
論文 参考訳(メタデータ) (2021-08-11T07:12:57Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
中国初のバイオメディカル言語理解評価ベンチマークを提示する。
名前付きエンティティ認識、情報抽出、臨床診断正規化、単文/文対分類を含む自然言語理解タスクのコレクションである。
本研究は,現在の11種類の中国モデルによる実験結果について報告し,その実験結果から,現在最先端のニューラルモデルがヒトの天井よりもはるかに悪い性能を示すことが示された。
論文 参考訳(メタデータ) (2021-06-15T12:25:30Z) - Extracting COVID-19 Diagnoses and Symptoms From Clinical Text: A New
Annotated Corpus and Neural Event Extraction Framework [14.226438210255676]
本研究は、COVID-19 Annotated Clinical Text (CACT) Corpusと呼ばれる新しい臨床コーパスを提示する。
新型コロナウイルスの診断、検査、臨床プレゼンテーションを特徴付ける詳細な注釈付き1,472枚のノートで構成されている。
本研究では,すべての注釈付き事象を共同抽出するイベント抽出モデルを提案する。
二次的応用として、構造化された患者データを用いて新型コロナウイルス検査結果の予測を行い、自動的に症状情報を抽出した。
論文 参考訳(メタデータ) (2020-12-02T05:25:02Z) - Med7: a transferable clinical natural language processing model for
electronic health records [6.935142529928062]
本稿では,臨床自然言語処理のための匿名認識モデルを提案する。
このモデルは、薬物名、ルート、頻度、摂取量、強度、形態、期間の7つのカテゴリを認識するよう訓練されている。
本研究は、米国における集中治療室のデータから、英国における二次医療精神保健記録(CRIS)へのモデル導入可能性を評価するものである。
論文 参考訳(メタデータ) (2020-03-03T00:55:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。