論文の概要: Improving Multilayer-Perceptron(MLP)-based Network Anomaly Detection
with Birch Clustering on CICIDS-2017 Dataset
- arxiv url: http://arxiv.org/abs/2208.09711v1
- Date: Sat, 20 Aug 2022 15:35:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-23 14:29:31.572269
- Title: Improving Multilayer-Perceptron(MLP)-based Network Anomaly Detection
with Birch Clustering on CICIDS-2017 Dataset
- Title(参考訳): CICIDS-2017データセット上でのバーチクラスタリングによるマルチ層パーセプトロン(MLP)に基づくネットワーク異常検出の改善
- Authors: Yuhua Yin, Julian Jang-Jaccard, Fariza Sabrina, Jin Kwak
- Abstract要約: データの事前グループ化にBirchとK-Meansクラスタリングを使用すると、侵入検知システムの性能が向上する。
本研究では,Birchクラスタリングを用いたマルチクラス化において,99.73%の精度を実現する。
- 参考スコア(独自算出の注目度): 2.179313476241343
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning algorithms have been widely used in intrusion detection
systems, including Multi-layer Perceptron (MLP). In this study, we proposed a
two-stage model that combines the Birch clustering algorithm and MLP classifier
to improve the performance of network anomaly multi-classification. In our
proposed method, we first apply Birch or Kmeans as an unsupervised clustering
algorithm to the CICIDS-2017 dataset to pre-group the data. The generated
pseudo-label is then added as an additional feature to the training of the
MLP-based classifier. The experimental results show that using Birch and
K-Means clustering for data pre-grouping can improve intrusion detection system
performance. Our method can achieve 99.73% accuracy in multi-classification
using Birch clustering, which is better than similar researches using a
stand-alone MLP model.
- Abstract(参考訳): 機械学習アルゴリズムは多層パーセプトロン(MLP)を含む侵入検知システムで広く使われている。
本研究では,birchクラスタリングアルゴリズムとmlp分類器を組み合わせた2段階モデルを提案する。
提案手法では,まず,教師なしクラスタリングアルゴリズムとしてBirchやKmeansをCICIDS-2017データセットに適用し,データの事前グループ化を行う。
生成された擬似ラベルは、mlpベースの分類器のトレーニングに追加機能として追加される。
実験の結果,データプリグループ化にbirchとk-meansクラスタリングを用いることで侵入検知システムの性能が向上することがわかった。
本手法はbirchクラスタリングを用いて99.73%の精度を実現し,スタンドアロンmlpモデルを用いた同様の研究よりも優れている。
関連論文リスト
- Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z) - Mitigating shortage of labeled data using clustering-based active
learning with diversity exploration [3.312798619476657]
本稿ではクラスタリングに基づくアクティブラーニングフレームワーク,すなわちクラスタリングに基づくサンプリングを用いたアクティブラーニングを提案する。
重なり合うクラスを分類する学習性能を向上させるために、クラスタ境界に基づくサンプルクエリ手順が導入された。
論文 参考訳(メタデータ) (2022-07-06T20:53:28Z) - Self-Evolutionary Clustering [1.662966122370634]
既存のディープクラスタリング手法の多くは、単純な距離比較に基づいており、手作り非線形マッピングによって生成されたターゲット分布に大きく依存している。
新たなモジュール型自己進化クラスタリング(Self-EvoC)フレームワークが構築され,自己管理的な分類によってクラスタリング性能が向上する。
このフレームワークは、サンプルアウトレイラを効率よく識別し、自己監督の助けを借りて、より良い目標分布を生成することができる。
論文 参考訳(メタデータ) (2022-02-21T19:38:18Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Progressive Cluster Purification for Unsupervised Feature Learning [48.87365358296371]
教師なしの特徴学習では、サンプル特異性に基づく手法はクラス間の情報を無視する。
本稿では,プログレッシブクラスタ形成時にクラス不整合サンプルを除外するクラスタリングに基づく新しい手法を提案する。
我々の手法は、プログレッシブ・クラスタ・パーフィケーション(PCP)と呼ばれ、訓練中に徐々にクラスタ数を減らし、プログレッシブ・クラスタリングを実装している。
論文 参考訳(メタデータ) (2020-07-06T08:11:03Z) - LSD-C: Linearly Separable Deep Clusters [145.89790963544314]
ラベルなしデータセットのクラスタを識別する新しい手法であるLSD-Cを提案する。
本手法は,最近の半教師付き学習の実践からインスピレーションを得て,クラスタリングアルゴリズムと自己教師付き事前学習と強力なデータ拡張を組み合わせることを提案する。
CIFAR 10/100, STL 10, MNIST, および文書分類データセットReuters 10Kなど, 一般的な公開画像ベンチマークにおいて, 当社のアプローチが競合より大幅に優れていたことを示す。
論文 参考訳(メタデータ) (2020-06-17T17:58:10Z) - A semi-supervised sparse K-Means algorithm [3.04585143845864]
クラスタリングに必要な機能のサブグループを検出するために、教師なしスパースクラスタリング手法を用いることができる。
半教師付き手法では、ラベル付きデータを使用して制約を作成し、クラスタリングソリューションを強化することができる。
提案アルゴリズムは,他の半教師付きアルゴリズムの高性能性を保ち,また,情報的特徴から情報的特徴を識別する能力も保持していることを示す。
論文 参考訳(メタデータ) (2020-03-16T02:05:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。