Machine Learning with Confidential Computing: A Systematization of Knowledge
- URL: http://arxiv.org/abs/2208.10134v3
- Date: Mon, 3 Jun 2024 13:48:59 GMT
- Title: Machine Learning with Confidential Computing: A Systematization of Knowledge
- Authors: Fan Mo, Zahra Tarkhani, Hamed Haddadi,
- Abstract summary: Privacy and security challenges in Machine Learning (ML) have become increasingly severe, along with ML's pervasive development and the recent demonstration of large attack surfaces.
As a mature system-oriented approach, Confidential Computing has been utilized in both academia and industry to mitigate privacy and security issues in various ML scenarios.
We systematize the prior work on Confidential Computing-assisted ML techniques that provide i) confidentiality guarantees and ii) integrity assurances, and discuss their advanced features and drawbacks.
- Score: 9.632031075287047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Privacy and security challenges in Machine Learning (ML) have become increasingly severe, along with ML's pervasive development and the recent demonstration of large attack surfaces. As a mature system-oriented approach, Confidential Computing has been utilized in both academia and industry to mitigate privacy and security issues in various ML scenarios. In this paper, the conjunction between ML and Confidential Computing is investigated. We systematize the prior work on Confidential Computing-assisted ML techniques that provide i) confidentiality guarantees and ii) integrity assurances, and discuss their advanced features and drawbacks. Key challenges are further identified, and we provide dedicated analyses of the limitations in existing Trusted Execution Environment (TEE) systems for ML use cases. Finally, prospective works are discussed, including grounded privacy definitions for closed-loop protection, partitioned executions of efficient ML, dedicated TEE-assisted designs for ML, TEE-aware ML, and ML full pipeline guarantees. By providing these potential solutions in our systematization of knowledge, we aim to build the bridge to help achieve a much stronger TEE-enabled ML for privacy guarantees without introducing computation and system costs.
Related papers
- The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
Machine learning (ML) sees an increasing prevalence of being used in the internet-of-things (IoT)-based smart grid.
adversarial distortion injected into the power signal will greatly affect the system's normal control and operation.
It is imperative to conduct vulnerability assessment for MLsgAPPs applied in the context of safety-critical power systems.
arXiv Detail & Related papers (2023-08-30T03:29:26Z) - Special Session: Towards an Agile Design Methodology for Efficient,
Reliable, and Secure ML Systems [12.53463551929214]
Modern Machine Learning systems are expected to be highly reliable against hardware failures as well as secure against adversarial and IP stealing attacks.
Privacy concerns are also becoming a first-order issue.
This article summarizes the main challenges in agile development of efficient, reliable and secure ML systems.
arXiv Detail & Related papers (2022-04-18T17:29:46Z) - Confidential Machine Learning Computation in Untrusted Environments: A
Systems Security Perspective [1.9116784879310027]
This paper conducts a systematic and comprehensive survey by classifying attack vectors and mitigation in TEE-protected confidential ML in the untrusted environment.
It analyzes the multi-party ML security requirements, and discusses related engineering challenges.
arXiv Detail & Related papers (2021-11-05T07:56:25Z) - Privacy-Preserving Machine Learning: Methods, Challenges and Directions [4.711430413139393]
Well-designed privacy-preserving machine learning (PPML) solutions have attracted increasing research interest from academia and industry.
This paper systematically reviews existing privacy-preserving approaches and proposes a PGU model to guide evaluation for various PPML solutions.
arXiv Detail & Related papers (2021-08-10T02:58:31Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
Open-world deployment of Machine Learning algorithms in safety-critical applications such as autonomous vehicles needs to address a variety of ML vulnerabilities.
New models and training techniques to reduce generalization error, achieve domain adaptation, and detect outlier examples and adversarial attacks.
Our organization maps state-of-the-art ML techniques to safety strategies in order to enhance the dependability of the ML algorithm from different aspects.
arXiv Detail & Related papers (2021-06-09T05:56:42Z) - White Paper Machine Learning in Certified Systems [70.24215483154184]
DEEL Project set-up the ML Certification 3 Workgroup (WG) set-up by the Institut de Recherche Technologique Saint Exup'ery de Toulouse (IRT)
arXiv Detail & Related papers (2021-03-18T21:14:30Z) - Towards a Robust and Trustworthy Machine Learning System Development [0.09236074230806578]
We present our recent survey on the state-of-the-art ML trustworthiness and technologies from a security engineering perspective.
We then push our studies forward above and beyond a survey by describing a metamodel we created that represents the body of knowledge in a standard and visualized way for ML practitioners.
We propose future research directions motivated by our findings to advance the development of robust and trustworthy ML systems.
arXiv Detail & Related papers (2021-01-08T14:43:58Z) - Robust Machine Learning Systems: Challenges, Current Trends,
Perspectives, and the Road Ahead [24.60052335548398]
Machine Learning (ML) techniques have been rapidly adopted by smart Cyber-Physical Systems (CPS) and Internet-of-Things (IoT)
They are vulnerable to various security and reliability threats, at both hardware and software levels, that compromise their accuracy.
This paper summarizes the prominent vulnerabilities of modern ML systems, highlights successful defenses and mitigation techniques against these vulnerabilities.
arXiv Detail & Related papers (2021-01-04T20:06:56Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.