Hierarchically Decomposed Graph Convolutional Networks for
Skeleton-Based Action Recognition
- URL: http://arxiv.org/abs/2208.10741v3
- Date: Wed, 19 Jul 2023 09:15:05 GMT
- Title: Hierarchically Decomposed Graph Convolutional Networks for
Skeleton-Based Action Recognition
- Authors: Jungho Lee, Minhyeok Lee, Dogyoon Lee, Sangyoun Lee
- Abstract summary: We propose a hierarchically decomposed graph convolutional network (HD-GCN) architecture with a novel hierarchically decomposed graph (HD-Graph)
The proposed model is evaluated and achieves state-of-the-art performance on four large, popular datasets.
- Score: 7.0650174975392925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph convolutional networks (GCNs) are the most commonly used methods for
skeleton-based action recognition and have achieved remarkable performance.
Generating adjacency matrices with semantically meaningful edges is
particularly important for this task, but extracting such edges is challenging
problem. To solve this, we propose a hierarchically decomposed graph
convolutional network (HD-GCN) architecture with a novel hierarchically
decomposed graph (HD-Graph). The proposed HD-GCN effectively decomposes every
joint node into several sets to extract major structurally adjacent and distant
edges, and uses them to construct an HD-Graph containing those edges in the
same semantic spaces of a human skeleton. In addition, we introduce an
attention-guided hierarchy aggregation (A-HA) module to highlight the dominant
hierarchical edge sets of the HD-Graph. Furthermore, we apply a new six-way
ensemble method, which uses only joint and bone stream without any motion
stream. The proposed model is evaluated and achieves state-of-the-art
performance on four large, popular datasets. Finally, we demonstrate the
effectiveness of our model with various comparative experiments.
Related papers
- Efficient Topology-aware Data Augmentation for High-Degree Graph Neural Networks [2.7523980737007414]
We propose TADA, an efficient and effective front-mounted data augmentation framework for graph neural networks (GNNs) on high-degree graphs (HDGs)
Under the hood, TADA includes two key modules: (i) feature expansion with structure embeddings, and (ii) topology- and attribute-aware graph sparsification.
TADA considerably improves the predictive performance of mainstream GNN models on 8 real homophilic/heterophilic HDGs in terms of node classification.
arXiv Detail & Related papers (2024-06-08T14:14:19Z) - Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The proposed graph Transformer encoder combines graph convolutions and self-attentions in a Transformer to model both local and global interactions.
We also propose a novel self-guided pre-training method for graph representation learning.
arXiv Detail & Related papers (2024-01-15T14:36:38Z) - Dynamic Dense Graph Convolutional Network for Skeleton-based Human
Motion Prediction [14.825185477750479]
This paper presents a Dynamic Dense Graph Convolutional Network (DD-GCN) which constructs a dense graph and implements an integrated dynamic message passing.
Based on the dense graph, we propose a dynamic message passing framework that learns dynamically from data to generate distinctive messages.
Experiments on benchmark Human 3.6M and CMU Mocap datasets verify the effectiveness of our DD-GCN.
arXiv Detail & Related papers (2023-11-29T07:25:49Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data.
The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not easily incorporated into a GNN.
Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data.
arXiv Detail & Related papers (2022-06-16T22:46:33Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
We investigate the problem of facial kinship verification by learning hierarchical reasoning graph networks.
We develop a Star-shaped Reasoning Graph Network (S-RGN) to exploit more powerful and flexible capacity.
We also develop a Hierarchical Reasoning Graph Network (H-RGN) to exploit more powerful and flexible capacity.
arXiv Detail & Related papers (2021-09-06T03:16:56Z) - SLGCN: Structure Learning Graph Convolutional Networks for Graphs under
Heterophily [5.619890178124606]
We propose a structure learning graph convolutional networks (SLGCNs) to alleviate the issue from two aspects.
Specifically, we design a efficient-spectral-clustering with anchors (ESC-ANCH) approach to efficiently aggregate feature representations from all similar nodes.
Experimental results on a wide range of benchmark datasets illustrate that the proposed SLGCNs outperform the stat-of-the-art GNN counterparts.
arXiv Detail & Related papers (2021-05-28T13:00:38Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Multi Scale Temporal Graph Networks For Skeleton-based Action
Recognition [5.970574258839858]
Graph convolutional networks (GCNs) can effectively capture the features of related nodes and improve the performance of the model.
Existing methods based on GCNs have two problems. First, the consistency of temporal and spatial features is ignored for extracting features node by node and frame by frame.
We propose a novel model called Temporal Graph Networks (TGN) for action recognition.
arXiv Detail & Related papers (2020-12-05T08:08:25Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Locality Preserving Dense Graph Convolutional Networks with Graph
Context-Aware Node Representations [19.623379678611744]
Graph convolutional networks (GCNs) have been widely used for representation learning on graph data.
In many graph classification applications, GCN-based approaches have outperformed traditional methods.
We propose a locality-preserving dense GCN with graph context-aware node representations.
arXiv Detail & Related papers (2020-10-12T02:12:27Z) - Mix Dimension in Poincar\'{e} Geometry for 3D Skeleton-based Action
Recognition [57.98278794950759]
Graph Convolutional Networks (GCNs) have already demonstrated their powerful ability to model the irregular data.
We present a novel spatial-temporal GCN architecture which is defined via the Poincar'e geometry.
We evaluate our method on two current largest scale 3D datasets.
arXiv Detail & Related papers (2020-07-30T18:23:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.