論文の概要: Unsupervised Anomaly Localization with Structural Feature-Autoencoders
- arxiv url: http://arxiv.org/abs/2208.10992v1
- Date: Tue, 23 Aug 2022 14:19:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-24 13:48:23.223089
- Title: Unsupervised Anomaly Localization with Structural Feature-Autoencoders
- Title(参考訳): 構造的特徴オートエンコーダを用いた教師なし異常局在
- Authors: Felix Meissen and Johannes Paetzold and Georgios Kaissis and Daniel
Rueckert
- Abstract要約: 医用画像の病因を検出する手段としては, 教師なし異常検出が一般的な方法となっている。
本稿では,入力強度画像を複数のチャネルを持つ空間に変換する特徴マッピング関数を用いてこの問題に対処する。
次に、この空間におけるオートエンコーダモデルを、強度の違いだけでなく、コントラストや構造の違いも考慮した構造的類似性損失を用いて訓練する。
- 参考スコア(独自算出の注目度): 6.667150890634173
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Unsupervised Anomaly Detection has become a popular method to detect
pathologies in medical images as it does not require supervision or labels for
training. Most commonly, the anomaly detection model generates a "normal"
version of an input image, and the pixel-wise $l^p$-difference of the two is
used to localize anomalies. However, large residuals often occur due to
imperfect reconstruction of the complex anatomical structures present in most
medical images. This method also fails to detect anomalies that are not
characterized by large intensity differences to the surrounding tissue. We
propose to tackle this problem using a feature-mapping function that transforms
the input intensity images into a space with multiple channels where anomalies
can be detected along different discriminative feature maps extracted from the
original image. We then train an Autoencoder model in this space using
structural similarity loss that does not only consider differences in intensity
but also in contrast and structure. Our method significantly increases
performance on two medical data sets for brain MRI. Code and experiments are
available at https://github.com/FeliMe/feature-autoencoder
- Abstract(参考訳): 教師なし異常検出は, トレーニングの監督やラベルを必要とせず, 医用画像の病理を診断するための一般的な方法となっている。
最も一般的に、異常検出モデルは入力画像の「正規」バージョンを生成し、その2つのピクセルの$l^p$-差分を用いて異常をローカライズする。
しかし,多くの医用画像にみられる複雑な解剖学的構造が不完全であるために,大きな残存物がしばしば発生する。
この方法はまた、周囲の組織に大きな強度差がない異常を検出することに失敗する。
そこで本研究では,入力強度画像を複数のチャネルを持つ空間に変換し,元の画像から抽出した異なる特徴マップに沿って異常を検出できる特徴マップ機能を提案する。
次に、強度の違いだけでなく、コントラストや構造も考慮しない構造的類似性損失を用いて、この空間でオートエンコーダモデルを訓練する。
脳MRIのための2つの医療データセットの性能を有意に向上させる。
コードと実験はhttps://github.com/felime/feature-autoencoderで利用可能
関連論文リスト
- A Hierarchically Feature Reconstructed Autoencoder for Unsupervised Anomaly Detection [8.512184778338806]
それは、階層的な特徴表現を抽出するための十分に訓練されたエンコーダと、これらの中間的特徴をエンコーダから再構成するデコーダで構成されている。
復号器が機能再構成に失敗すると異常を検知し、階層的特徴再構成の誤差を異常マップに集約して異常局所化を実現する。
実験の結果,提案手法はMNIST, Fashion-MNIST, CIFAR-10, MVTec異常検出データセットにおいて,最先端の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-05-15T07:20:27Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
本稿では, 自己監督型マスク型畳み込み変圧器ブロック (SSMCTB) について述べる。
本研究では,従来の自己教師型予測畳み込み抑止ブロック(SSPCAB)を3次元マスク付き畳み込み層,チャンネルワイドアテンション用トランスフォーマー,およびハマーロスに基づく新たな自己教師型目標を用いて拡張する。
論文 参考訳(メタデータ) (2022-09-25T04:56:10Z) - AnoViT: Unsupervised Anomaly Detection and Localization with Vision
Transformer-based Encoder-Decoder [3.31490164885582]
我々は,画像パッチ間のグローバルな関係を学習することにより,通常の情報を反映する視覚変換器を用いたエンコーダデコーダモデルAnoViTを提案する。
提案モデルは,3つのベンチマークデータセット上での畳み込みモデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-03-21T09:01:37Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
無線画像からの異常検出のための空間認識型メモリキューを提案する(略してSQUID)。
SQUIDは, 微細な解剖学的構造を逐次パターンに分類でき, 推測では画像中の異常(見えない/修正されたパターン)を識別できる。
論文 参考訳(メタデータ) (2021-11-26T13:47:34Z) - MLF-SC: Incorporating multi-layer features to sparse coding for anomaly
detection [2.2276675054266395]
画像の異常は、カーペットの上の小さな穴から大きな汚れまで、様々なスケールで発生する。
広く使われている異常検出方法の1つであるスパースコーディング(sparse coding)は、画像のスパース表現に使用されるパッチサイズから外れた異常を扱う際に問題となる。
本稿では,マルチスケール機能をスパース符号化に取り入れ,異常検出の性能を向上させることを提案する。
論文 参考訳(メタデータ) (2021-04-09T10:20:34Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
画像スプライシング偽造検出は、画像指紋によって改ざんされた領域と非改ざんされた領域を区別するグローバルバイナリ分類タスクである。
画像スプライシングフォージェリ検出のためのデュアルエンコーダU-Net(D-Unet)という,固定されていないエンコーダと固定エンコーダを用いた新しいネットワークを提案する。
D-Unetと最先端技術の比較実験において、D-Unetは画像レベルおよび画素レベルの検出において他の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-03T10:54:02Z) - Image Anomaly Detection by Aggregating Deep Pyramidal Representations [16.246831343527052]
異常検出は、データセット内で、ほとんどのデータと大きく異なるサンプルを特定することで構成される。
本稿では,複数のピラミッドレベルを持つ深層ニューラルネットワークを用いた画像異常検出に着目し,画像特徴を異なるスケールで解析する。
論文 参考訳(メタデータ) (2020-11-12T09:58:27Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Anomaly Detection in Medical Imaging with Deep Perceptual Autoencoders [1.7277957019593995]
画像異常検出の新しい強力な手法を提案する。
これは、再設計されたトレーニングパイプラインを備えた古典的なオートエンコーダアプローチに依存している。
複雑な医用画像解析タスクにおける最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2020-06-23T18:45:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。