論文の概要: Evolutionary Quantum Architecture Search for Parametrized Quantum
Circuits
- arxiv url: http://arxiv.org/abs/2208.11167v1
- Date: Tue, 23 Aug 2022 19:47:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-25 12:35:45.903808
- Title: Evolutionary Quantum Architecture Search for Parametrized Quantum
Circuits
- Title(参考訳): パラメトリズド量子回路の進化的量子アーキテクチャ探索
- Authors: Li Ding, Lee Spector
- Abstract要約: 本稿では,PQCモデルのための進化的量子アーキテクチャ探索フレームワークであるEQAS-PQCを紹介する。
提案手法は,ハイブリッド量子古典モデルの性能を著しく向上させることができることを示す。
- 参考スコア(独自算出の注目度): 7.298440208725654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in quantum computing have shown promising computational
advantages in many problem areas. As one of those areas with increasing
attention, hybrid quantum-classical machine learning systems have demonstrated
the capability to solve various data-driven learning tasks. Recent works show
that parameterized quantum circuits (PQCs) can be used to solve challenging
reinforcement learning (RL) tasks with provable learning advantages. While
existing works yield potentials of PQC-based methods, the design choices of PQC
architectures and their influences on the learning tasks are generally
underexplored. In this work, we introduce EQAS-PQC, an evolutionary quantum
architecture search framework for PQC-based models, which uses a
population-based genetic algorithm to evolve PQC architectures by exploring the
search space of quantum operations. Experimental results show that our method
can significantly improve the performance of hybrid quantum-classical models in
solving benchmark reinforcement problems. We also model the probability
distributions of quantum operations in top-performing architectures to identify
essential design choices that are critical to the performance.
- Abstract(参考訳): 近年の量子コンピューティングの進歩は、多くの問題領域において有望な計算上の優位性を示している。
注目度が高まる分野のひとつとして、ハイブリッド量子古典機械学習システムは、様々なデータ駆動学習タスクを解く能力を示した。
近年の研究では、パラメータ化量子回路(pqcs)が、証明可能な学習の利点を持つ強化学習(rl)課題の解決に利用できることが示されている。
既存の研究はPQCに基づく手法の可能性を秘めているが、PQCアーキテクチャの設計選択と学習タスクに対するその影響は概して過小評価されている。
本稿では,pqcに基づくモデルのための進化的量子アーキテクチャ探索フレームワークであるeqas-pqcを紹介し,量子演算の探索空間を探索することにより,集団型遺伝的アルゴリズムを用いてpqcアーキテクチャを進化させる。
実験の結果,本手法はベンチマーク強化問題を解く際に,ハイブリッド量子古典モデルの性能を大幅に向上できることがわかった。
また、トップパフォーマンスアーキテクチャにおける量子演算の確率分布をモデル化し、性能に重要な設計選択を同定する。
関連論文リスト
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Differentiable Quantum Architecture Search in Asynchronous Quantum Reinforcement Learning [3.6881738506505988]
トレーニング可能な回路パラメータと構造重み付けを可能にするために、微分可能な量子アーキテクチャ探索(DiffQAS)を提案する。
提案したDiffQAS-QRL手法は,手作業による回路アーキテクチャに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2024-07-25T17:11:00Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Learning capability of parametrized quantum circuits [2.51657752676152]
変分量子アルゴリズム(VQA)とそのパラメタライズド量子回路(PQC)による量子機械学習分野への応用は、ノイズの多い中間スケール量子コンピューティングデバイスを活用する主要な方法の1つであると考えられている。
本稿では、Schuldらによる研究に基づいて、学習能力の新たな尺度を用いて、PQCの一般的なアンス・アゼと比較する。
また,Beerらが導入した分散量子ニューラルネットワーク(dQNN)についても検討し,その学習能力を高めるために,dQNNのデータ再アップロード構造を提案する。
論文 参考訳(メタデータ) (2022-09-21T13:26:20Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
変分量子アルゴリズム(VQA)は、ファイナンス、機械学習、化学といった様々な分野において、証明可能な計算上の優位性を得るための強力な証拠を示している。
しかし、現代のVQAで利用されるアンザッツは、表現性と訓練性の間のトレードオフのバランスをとることができない。
8量子ビット超伝導量子プロセッサ上でVQAを強化するために,効率的な自動アンサッツ設計技術を適用した最初の実証実験を実証する。
論文 参考訳(メタデータ) (2022-01-04T01:53:42Z) - Quantum agents in the Gym: a variational quantum algorithm for deep
Q-learning [0.0]
本稿では、離散的かつ連続的な状態空間に対するRLタスクを解くために使用できるパラメタライズド量子回路(PQC)のトレーニング手法を提案する。
量子Q学習エージェントのどのアーキテクチャ選択が、特定の種類の環境をうまく解決するのに最も重要であるかを検討する。
論文 参考訳(メタデータ) (2021-03-28T08:57:22Z) - Neural Predictor based Quantum Architecture Search [15.045985536395479]
変分量子アルゴリズム(VQA)は、短期的には量子古典的ハイブリッド計算パラダイムの下で現実的な問題に対して量子的優位性をもたらすと広く推測されている。
本研究では,量子アーキテクチャ探索(QAS)の評価ポリシーとしてニューラルネットワークに基づく予測器を提案する。
論文 参考訳(メタデータ) (2021-03-11T08:26:12Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Differentiable Quantum Architecture Search [15.045985536395479]
微分可能量子アーキテクチャ探索(DQAS)の一般的なフレームワークを提案する。
DQASは、エンドツーエンドの微分可能な方法で量子回路の自動設計を可能にする。
論文 参考訳(メタデータ) (2020-10-16T18:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。