Comparison of Object Detection Algorithms for Street-level Objects
- URL: http://arxiv.org/abs/2208.11315v1
- Date: Wed, 24 Aug 2022 05:57:12 GMT
- Title: Comparison of Object Detection Algorithms for Street-level Objects
- Authors: Martinus Grady Naftali, Jason Sebastian Sulistyawan, and Kelvin Julian
- Abstract summary: This paper compares various one-stage detector algorithms; SSD MobileNetv2 FPN-lite 320x320, YOLOv3, YOLOv4, YOLOv5l, and YOLOv5s for street-level object detection within real-time images.
It is found that YOLOv5s is the most efficient, with it having a YOLOv5l accuracy and a speed almost as quick as the MobileNetv2 FPN-lite.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection for street-level objects can be applied to various use
cases, from car and traffic detection to the self-driving car system.
Therefore, finding the best object detection algorithm is essential to apply it
effectively. Many object detection algorithms have been released, and many have
compared object detection algorithms, but few have compared the latest
algorithms, such as YOLOv5, primarily which focus on street-level objects. This
paper compares various one-stage detector algorithms; SSD MobileNetv2 FPN-lite
320x320, YOLOv3, YOLOv4, YOLOv5l, and YOLOv5s for street-level object detection
within real-time images. The experiment utilizes a modified Udacity Self
Driving Car Dataset with 3,169 images. Dataset is split into train, validation,
and test; Then, it is preprocessed and augmented using rescaling, hue shifting,
and noise. Each algorithm is then trained and evaluated. Based on the
experiments, the algorithms have produced decent results according to the
inference time and the values of their precision, recall, F1-Score, and Mean
Average Precision (mAP). The results also shows that YOLOv5l outperforms the
other algorithms in terms of accuracy with a mAP@.5 of 0.593, MobileNetv2
FPN-lite has the fastest inference time among the others with only 3.20ms
inference time. It is also found that YOLOv5s is the most efficient, with it
having a YOLOv5l accuracy and a speed almost as quick as the MobileNetv2
FPN-lite. This shows that various algorithm are suitable for street-level
object detection and viable enough to be used in self-driving car.
Related papers
- A lightweight YOLOv5-FFM model for occlusion pedestrian detection [1.62877896907106]
YOLO, as an efficient and simple one-stage target detection method, is often used for pedestrian detection in various environments.
In this paper, we propose an improved lightweight YOLOv5 model to deal with these problems.
This model can achieve better pedestrian detection accuracy with fewer floating-point operations (FLOPs), especially for occluded targets.
arXiv Detail & Related papers (2024-08-13T04:42:02Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
We propose a saliency-based OD algorithm (SalienDet) to detect unknown objects.
Our SalienDet utilizes a saliency-based algorithm to enhance image features for object proposal generation.
We design a dataset relabeling approach to differentiate the unknown objects from all objects in training sample set to achieve Open-World Detection.
arXiv Detail & Related papers (2023-05-11T16:19:44Z) - Fast and Accurate Object Detection on Asymmetrical Receptive Field [0.0]
This article proposes methods for improving object detection accuracy from the perspective of changing receptive fields.
The structure of the head part of YOLOv5 is modified by adding asymmetrical pooling layers.
The performances of the new model in this article are compared with original YOLOv5 model and analyzed from several parameters.
arXiv Detail & Related papers (2023-03-15T23:59:18Z) - TraCon: A novel dataset for real-time traffic cones detection using deep
learning [7.759841699582662]
In this work, the YOLOv5 algorithm is employed, in order to find a solution for the efficient and fast detection of traffic cones.
The YOLOv5 can achieve a high detection accuracy with the score of IoU up to 91.31%.
arXiv Detail & Related papers (2022-05-24T06:51:58Z) - CNN-based Omnidirectional Object Detection for HermesBot Autonomous
Delivery Robot with Preliminary Frame Classification [53.56290185900837]
We propose an algorithm for optimizing a neural network for object detection using preliminary binary frame classification.
An autonomous mobile robot with 6 rolling-shutter cameras on the perimeter providing a 360-degree field of view was used as the experimental setup.
arXiv Detail & Related papers (2021-10-22T15:05:37Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
We propose an end-to-end network for joint object detection and tracking based on radar and camera sensor fusion.
Our proposed method uses a center-based radar-camera fusion algorithm for object detection and utilizes a greedy algorithm for object association.
We evaluate our method on the challenging nuScenes dataset, where it achieves 20.0 AMOTA and outperforms all vision-based 3D tracking methods in the benchmark.
arXiv Detail & Related papers (2021-07-11T23:56:53Z) - Achieving Real-Time Object Detection on MobileDevices with Neural
Pruning Search [45.20331644857981]
We propose a compiler-aware neural pruning search framework to achieve high-speed inference on autonomous vehicles for 2D and 3D object detection.
For the first time, the proposed method achieves computation (close-to) real-time, 55ms and 99ms inference times for YOLOv4 based 2D object detection and PointPillars based 3D detection.
arXiv Detail & Related papers (2021-06-28T18:59:20Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - Expandable YOLO: 3D Object Detection from RGB-D Images [64.14512458954344]
This paper aims at constructing a light-weight object detector that inputs a depth and a color image from a stereo camera.
By extending the network architecture of YOLOv3 to 3D in the middle, it is possible to output in the depth direction.
Intersection over Uninon (IoU) in 3D space is introduced to confirm the accuracy of region extraction results.
arXiv Detail & Related papers (2020-06-26T07:32:30Z) - Train in Germany, Test in The USA: Making 3D Object Detectors Generalize [59.455225176042404]
deep learning has substantially improved the 3D object detection accuracy for LiDAR and stereo camera data alike.
Most datasets for autonomous driving are collected within a narrow subset of cities within one country.
In this paper we consider the task of adapting 3D object detectors from one dataset to another.
arXiv Detail & Related papers (2020-05-17T00:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.