論文の概要: A novel approach for Fair Principal Component Analysis based on
eigendecomposition
- arxiv url: http://arxiv.org/abs/2208.11362v1
- Date: Wed, 24 Aug 2022 08:20:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-25 13:27:31.730534
- Title: A novel approach for Fair Principal Component Analysis based on
eigendecomposition
- Title(参考訳): 固有分解に基づく公平主成分分析への新しいアプローチ
- Authors: Guilherme Dean Pelegrina and Leonardo Tomazeli Duarte
- Abstract要約: 1次元探索からなる簡単な戦略を用いて,公平性問題に対処する新しいPCAアルゴリズムを提案する。
私たちの発見は、いくつかの現実の状況と、バランスの取れていないデータセットとバランスの取れていないデータセットの両方のシナリオで一致しています。
- 参考スコア(独自算出の注目度): 10.203602318836444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Principal component analysis (PCA), a ubiquitous dimensionality reduction
technique in signal processing, searches for a projection matrix that minimizes
the mean squared error between the reduced dataset and the original one. Since
classical PCA is not tailored to address concerns related to fairness, its
application to actual problems may lead to disparity in the reconstruction
errors of different groups (e.g., men and women, whites and blacks, etc.), with
potentially harmful consequences such as the introduction of bias towards
sensitive groups. Although several fair versions of PCA have been proposed
recently, there still remains a fundamental gap in the search for algorithms
that are simple enough to be deployed in real systems. To address this, we
propose a novel PCA algorithm which tackles fairness issues by means of a
simple strategy comprising a one-dimensional search which exploits the
closed-form solution of PCA. As attested by numerical experiments, the proposal
can significantly improve fairness with a very small loss in the overall
reconstruction error and without resorting to complex optimization schemes.
Moreover, our findings are consistent in several real situations as well as in
scenarios with both unbalanced and balanced datasets.
- Abstract(参考訳): 信号処理におけるユビキタス次元の低減手法である主成分分析(PCA)は、削減されたデータセットと元のデータの間の平均2乗誤差を最小化する投影行列を探索する。
古典的なpcaはフェアネスに関する懸念に対処するために調整されていないため、実際の問題への適用は、異なるグループのレコンストラクションエラー(例えば、男女、白人、黒人など)に格差をもたらし、敏感なグループに対するバイアスの導入のような潜在的に有害な結果をもたらす可能性がある。
近年,PCAの公平なバージョンがいくつか提案されているが,実際のシステムに展開可能なアルゴリズムの探索には,依然として根本的なギャップが残っている。
そこで本研究では,PCAの閉形式解を利用した一次元探索による簡単な戦略を用いて,公平性問題に対処する新しいPCAアルゴリズムを提案する。
数値実験によって実証されたように、この提案は、全体の復元誤差が極めて小さく、複雑な最適化方式に頼らずに、公平性を著しく改善することができる。
さらに,不均衡なデータセットとバランスの取れないデータセットの両方のシナリオにおいても,いくつかの実環境においても結果が一致している。
関連論文リスト
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
機械学習の幅広い問題にまたがる正規化誤差フィードバックアルゴリズムに対する収束の最初の証明を提供する。
提案手法では,許容可能なステップサイズが大きくなったため,新しい正規化エラーフィードバックアルゴリズムは,各種タスクにおける非正規化エラーよりも優れていた。
論文 参考訳(メタデータ) (2024-10-22T10:19:27Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - Empirical Bayes Covariance Decomposition, and a solution to the Multiple
Tuning Problem in Sparse PCA [2.5382095320488673]
スパース主成分分析(PCA)は,PCAの解釈可能性と信頼性を両立させる手法として提案されている。
経験ベイズ法による「複数チューニング問題」の解法を提案する。
論文 参考訳(メタデータ) (2023-12-06T04:00:42Z) - PARL: A Unified Framework for Policy Alignment in Reinforcement Learning from Human Feedback [106.63518036538163]
我々は、強化学習におけるポリシーアライメントの最近強調された重要な問題に対処するために、新しい統合された二段階最適化ベースのフレームワーク、textsfPARLを提案する。
本フレームワークは, 上向きの目標(逆設計)の分布を, 下向きの最適変数で明示的にパラメータ化することにより, これらの問題に対処する。
その結果,提案したtextsfPARL が RL のアライメントの懸念に対処できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-03T18:03:44Z) - Fair principal component analysis (PCA): minorization-maximization
algorithms for Fair PCA, Fair Robust PCA and Fair Sparse PCA [6.974999794070285]
公平なPCA(FPCA)問題を解決するために,新しい反復アルゴリズムを提案する。
提案アルゴリズムはアルゴリズムの反復ごとに厳密であることが証明された半直交制約の緩和に依存する。
本稿では,提案手法の性能を,合成データセットと実生活データセットの2つの最先端手法と比較する。
論文 参考訳(メタデータ) (2023-05-10T08:14:32Z) - Efficient fair PCA for fair representation learning [21.990310743597174]
そこで本研究では,標準的なPCAに類似した解析解をカーネル化可能な,概念的にシンプルなアプローチを提案する。
提案手法は,標準PCAやカーネルPCAと同じ複雑さを持ち,半定値プログラミングや多様体最適化に基づく等価PCAの既存手法よりもはるかに高速に動作する。
論文 参考訳(メタデータ) (2023-02-26T13:34:43Z) - Proposal Distribution Calibration for Few-Shot Object Detection [65.19808035019031]
few-shot object detection (FSOD)では、重度のサンプル不均衡を軽減するために、2段階の訓練パラダイムが広く採用されている。
残念ながら、極端なデータ不足は、提案の分布バイアスを増大させ、RoIヘッドが新しいクラスに進化するのを妨げます。
本稿では,RoIヘッドのローカライゼーションと分類能力を高めるために,単純かつ効果的な提案分布キャリブレーション(PDC)手法を提案する。
論文 参考訳(メタデータ) (2022-12-15T05:09:11Z) - FAST-PCA: A Fast and Exact Algorithm for Distributed Principal Component
Analysis [12.91948651812873]
主成分分析(PCA)は、機械学習の世界における基本的なデータ前処理ツールである。
本稿では,FAST-PCA (Fast and exact distributed PCA) と呼ばれる分散PCAアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-27T16:10:59Z) - Enhanced Principal Component Analysis under A Collaborative-Robust
Framework [89.28334359066258]
重み学習とロバストな損失を非自明な方法で組み合わせる,一般的な協調ロバスト重み学習フレームワークを提案する。
提案されたフレームワークでは、トレーニング中の重要度を示す適切なサンプルの一部のみがアクティブになり、エラーが大きい他のサンプルは無視されません。
特に、不活性化試料の負の効果はロバスト損失関数によって軽減される。
論文 参考訳(メタデータ) (2021-03-22T15:17:37Z) - A Linearly Convergent Algorithm for Distributed Principal Component
Analysis [12.91948651812873]
本稿では,1時間スケール分散pcaアルゴリズムである分散sanger's algorithm(dsa)を提案する。
提案アルゴリズムは真の解の近傍に線形収束することを示した。
論文 参考訳(メタデータ) (2021-01-05T00:51:14Z) - AP-Loss for Accurate One-Stage Object Detection [49.13608882885456]
一段階の物体検出器は、分類損失と局所化損失を同時に最適化することによって訓練される。
前者は、多数のアンカーのため、非常に前景と後方のアンカーの不均衡に悩まされる。
本稿では,一段検知器の分類タスクをランキングタスクに置き換える新しい枠組みを提案する。
論文 参考訳(メタデータ) (2020-08-17T13:22:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。