論文の概要: Hidden Convexity of Fair PCA and Fast Solver via Eigenvalue Optimization
- arxiv url: http://arxiv.org/abs/2503.00299v1
- Date: Sat, 01 Mar 2025 02:13:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:26:51.341300
- Title: Hidden Convexity of Fair PCA and Fast Solver via Eigenvalue Optimization
- Title(参考訳): 固有値最適化によるフェアPCAと高速解の隠れ凸性
- Authors: Junhui Shen, Aaron J. Davis, Ding Lu, Zhaojun Bai,
- Abstract要約: 主成分分析(英: principal Component Analysis、PCA)は、高次元データセットの次元的削減のための機械学習の技法である。
The Fair (FPCA) model was introduced by Samadi et al. to equalize the reconstruction loss between subgroups。
Samadiらによって提案された半有限緩和(SDR)に基づくアプローチは、準最適解に対しても計算コストがかかる。
本稿では,FPCAモデルに隠れた凸性を同定し,固有値最適化による凸最適化アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 1.4999444543328293
- License:
- Abstract: Principal Component Analysis (PCA) is a foundational technique in machine learning for dimensionality reduction of high-dimensional datasets. However, PCA could lead to biased outcomes that disadvantage certain subgroups of the underlying datasets. To address the bias issue, a Fair PCA (FPCA) model was introduced by Samadi et al. (2018) for equalizing the reconstruction loss between subgroups. The semidefinite relaxation (SDR) based approach proposed by Samadi et al. (2018) is computationally expensive even for suboptimal solutions. To improve efficiency, several alternative variants of the FPCA model have been developed. These variants often shift the focus away from equalizing the reconstruction loss. In this paper, we identify a hidden convexity in the FPCA model and introduce an algorithm for convex optimization via eigenvalue optimization. Our approach achieves the desired fairness in reconstruction loss without sacrificing performance. As demonstrated in real-world datasets, the proposed FPCA algorithm runs $8\times$ faster than the SDR-based algorithm, and only at most 85% slower than the standard PCA.
- Abstract(参考訳): 主成分分析(PCA)は、高次元データセットの次元化のための機械学習の基礎技術である。
しかし、PCAは、基礎となるデータセットの特定のサブグループに不利なバイアスのある結果をもたらす可能性がある。
バイアス問題に対処するため、サブグループ間の再構成損失を等化するために、SamadiらによってFPCAモデルが導入された。
Samadi et al (2018) によって提唱された半定値緩和(SDR)に基づくアプローチは、準最適解に対しても計算コストがかかる。
効率を改善するために、FPCAモデルの代替案がいくつか開発されている。
これらの変種は、しばしば再建損失の等化から焦点を移す。
本稿では,FPCAモデルに隠れた凸性を同定し,固有値最適化による凸最適化アルゴリズムを提案する。
提案手法は, 性能を犠牲にすることなく, 再建損失の適正性を達成できる。
実世界のデータセットで示されているように、提案されたFPCAアルゴリズムは、SDRベースのアルゴリズムよりも8\times$高速で動作し、標準のPCAよりも少なくとも85%遅い。
関連論文リスト
- Correcting the Mythos of KL-Regularization: Direct Alignment without Overoptimization via Chi-Squared Preference Optimization [78.82586283794886]
$chi2$-Preference Optimization(chi$PO)は、オーバー最適化に対して確実に堅牢なオフラインアライメントアルゴリズムである。
$chi$POは、正規化による不確実性に直面して悲観主義の原理を実装している。
$chi$POの単純さと強力な保証により、オーバー最適化に対して確実に堅牢な、実用的で汎用的なオフラインアライメントアルゴリズムとなった。
論文 参考訳(メタデータ) (2024-07-18T11:08:40Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - Improved Privacy-Preserving PCA Using Optimized Homomorphic Matrix
Multiplication [0.0]
主成分分析(英: principal Component Analysis、PCA)は、機械学習とデータ分析の領域で広く利用されている重要な技術である。
近年,セキュアなクラウドコンピューティングシナリオにおいて,プライバシ保護型PCAアルゴリズムの同型暗号化を活用する取り組みが進められている。
本稿では,これらの制約に対処するプライバシー保護PCAに対して,従来の手法に比べて効率,精度,拡張性に優れる新たなアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-27T02:51:20Z) - Fair principal component analysis (PCA): minorization-maximization
algorithms for Fair PCA, Fair Robust PCA and Fair Sparse PCA [6.974999794070285]
公平なPCA(FPCA)問題を解決するために,新しい反復アルゴリズムを提案する。
提案アルゴリズムはアルゴリズムの反復ごとに厳密であることが証明された半直交制約の緩和に依存する。
本稿では,提案手法の性能を,合成データセットと実生活データセットの2つの最先端手法と比較する。
論文 参考訳(メタデータ) (2023-05-10T08:14:32Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
AUPRC(Area Under the Precision-Recall Curve)の最適化は、機械学習にとって重要な問題である。
本研究では, AUPRC最適化の単依存一般化における最初の試行について述べる。
3つの画像検索データセットの実験は、我々のフレームワークの有効性と健全性に言及する。
論文 参考訳(メタデータ) (2022-09-27T09:06:37Z) - A novel approach for Fair Principal Component Analysis based on
eigendecomposition [10.203602318836444]
1次元探索からなる簡単な戦略を用いて,公平性問題に対処する新しいPCAアルゴリズムを提案する。
私たちの発見は、いくつかの現実の状況と、バランスの取れていないデータセットとバランスの取れていないデータセットの両方のシナリオで一致しています。
論文 参考訳(メタデータ) (2022-08-24T08:20:16Z) - Large-scale Optimization of Partial AUC in a Range of False Positive
Rates [51.12047280149546]
ROC曲線 (AUC) の下の領域は、機械学習において最も広く使われている分類モデルのパフォーマンス指標の1つである。
近年の封筒平滑化技術に基づく効率的な近似勾配降下法を開発した。
提案アルゴリズムは,効率のよい解法を欠くランク付けされた範囲損失の和を最小化するためにも利用できる。
論文 参考訳(メタデータ) (2022-03-03T03:46:18Z) - Doubly Robust Off-Policy Actor-Critic: Convergence and Optimality [131.45028999325797]
ディスカウント型MDPのための2倍堅牢なオフポリチックAC(DR-Off-PAC)を開発した。
DR-Off-PACは、俳優と批評家の両方が一定のステップで同時に更新される単一のタイムスケール構造を採用しています。
有限時間収束速度を研究し, dr-off-pac のサンプル複雑性を特徴とし, $epsilon$-accurate optimal policy を得る。
論文 参考訳(メタデータ) (2021-02-23T18:56:13Z) - Principal Ellipsoid Analysis (PEA): Efficient non-linear dimension
reduction & clustering [9.042239247913642]
本稿では,データとより柔軟なクラスタ形状の非線形関係を実現することにより,PCAとk平均の改善に焦点を当てる。
鍵となる貢献は、PCAに代わる単純で効率的な代替品を定義する、PEA(Principal Analysis)の新しいフレームワークである。
さまざまな実際のデータクラスタリングアプリケーションにおいて、PEAは単純なデータセットのためのk-meansと同様に機能し、より複雑な設定でパフォーマンスを劇的に改善する。
論文 参考訳(メタデータ) (2020-08-17T06:25:50Z) - Approximation Algorithms for Sparse Principal Component Analysis [57.5357874512594]
主成分分析(PCA)は、機械学習と統計学において広く使われている次元削減手法である。
スパース主成分分析(Sparse principal Component Analysis)と呼ばれる,スパース主成分負荷を求める様々な手法が提案されている。
本研究では,SPCA問題に対するしきい値の精度,時間,近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-23T04:25:36Z) - Fair Principal Component Analysis and Filter Design [2.66512000865131]
我々は、複数のターゲットベクトルに公平にまたがる低次元部分空間を探索する。
ターゲットの場合の最適化の背景となる環境を解析する。
ランドスケープが良性であることを証明し、すべての局所ミニマがグローバルに最適であることを示す。
論文 参考訳(メタデータ) (2020-02-16T11:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。