Two-photon absorption cross sections of pulsed entangled beams
- URL: http://arxiv.org/abs/2312.00167v1
- Date: Thu, 30 Nov 2023 19:57:41 GMT
- Title: Two-photon absorption cross sections of pulsed entangled beams
- Authors: Frank Schlawin
- Abstract summary: Entangled two-photon absorption (ETPA) could form the basis of nonlinear quantum spectroscopy.
We show that quantum-enhanced cross sections can persist even to very large photon numbers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entangled two-photon absorption (ETPA) could form the basis of nonlinear
quantum spectroscopy at very low photon fluxes, since, at sufficiently low
photon fluxes, ETPA scales linearly with the photon flux. When different pairs
start to overlap temporally, accidental coincidences are thought to give rise
to a 'classical' quadratic scaling which dominates the signal at large photon
fluxes and thus recovers a supposedly classical regime, where any quantum
advantage is thought to be lost. Here we scrutinize this assumption and
demonstrate that quantum-enhanced absorption cross sections can persist even to
very large photon numbers. To this end, we use a minimal model for quantum
light, which can interpolate continuously between the entangled pair and a
high-photon-flux limit, to derive analytically ETPA cross sections and the
intensity crossover regime. We investigate the interplay between spectral and
spatial degrees of freedom, how linewidth broadening of the sample impacts the
experimentally achievable enhancement.
Related papers
- Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Quantum imaging exploiting twisted photon pairs [6.939768185086755]
We propose a quantum imaging scheme exploiting twisted photon pairs with tunable spatial-correlation regions.
Our work could pave a way for twisted-photon-based quantum holography and quantum microscopy.
arXiv Detail & Related papers (2022-06-13T03:16:59Z) - Aspects of Two-photon Absorption of Squeezed Light: the CW limit [0.0]
We find an enhancement of the two-photon absorption due to resonant contributions from the large squeezed light bandwidth.
One-photon absorption is the dominant process in the region of parameter space where a large enhancement of the two-photon absorption is possible.
arXiv Detail & Related papers (2022-05-16T07:34:03Z) - Single Photon Scattering Can Account for the Discrepancies Between
Entangled Two-Photon Measurement Techniques [0.0]
Entangled photon pairs are predicted to linearize and increase the efficiency of two-photon absorption.
Despite a range of theoretical studies and experimental measurements, inconsistencies persist about the value of the entanglement enhanced interaction cross section.
A spectrometer is constructed that can temporally and spectrally characterize the entangled photon state.
arXiv Detail & Related papers (2022-02-23T20:14:11Z) - Theory of Two-Photon Absorption with Broadband Squeezed Vacuum [0.0]
We present an analytical quantum theoretic model for non-resonant molecular two-photon absorption (TPA) of broadband, spectrally multi-mode squeezed vacuum.
The results are relevant to the potential use of entangled-light TPA as a spectroscopic and imaging method.
arXiv Detail & Related papers (2022-02-02T19:15:20Z) - Hot-Band Absorption Can Mimic Entangled Two-Photon Absorption [52.77024349608834]
We investigated the fluorescence signals from Rhodamine 6G and LDS798 excited with a CW laser or an entangled photon pair source at 1060 nm.
We observed a signal that originates from hot-band absorption (HBA), which is one-photon absorption from thermally-populated vibrational levels of the ground electronic state.
For the typical conditions under which E2PEF measurements are performed, contributions from the HBA process could lead to a several orders-of-magnitude overestimate of the quantum advantage for excitation efficiency.
arXiv Detail & Related papers (2021-11-10T21:17:47Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - The Origin of Antibunching in Resonance Fluorescence [0.0]
Epitaxial quantum dots have emerged as one of the best single-photon sources.
One intriguing observation is the scattering of photons with subnatural linewidth from a two-level system.
Here, we demonstrate that this simultaneous observation of subnatural linewidth and antibunching is not possible with simple resonant excitation.
arXiv Detail & Related papers (2020-05-24T16:48:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.