論文の概要: A Perturbation Resistant Transformation and Classification System for
Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2208.11839v1
- Date: Thu, 25 Aug 2022 02:58:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-26 13:02:02.056257
- Title: A Perturbation Resistant Transformation and Classification System for
Deep Neural Networks
- Title(参考訳): 深層ニューラルネットワークの摂動抵抗変換と分類システム
- Authors: Nathaniel Dean, Dilip Sarkar
- Abstract要約: 深層畳み込みニューラルネットワークは、さまざまな自然画像の正確な分類を行うが、設計時には容易に認識できる。
本稿では,攻撃的かつ容易に推定できないマルチプロハングトレーニング,非バウンド入力変換,画像アンサンブルシステムを設計する。
- 参考スコア(独自算出の注目度): 0.685316573653194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep convolutional neural networks accurately classify a diverse range of
natural images, but may be easily deceived when designed, imperceptible
perturbations are embedded in the images. In this paper, we design a
multi-pronged training, input transformation, and image ensemble system that is
attack agnostic and not easily estimated. Our system incorporates two novel
features. The first is a transformation layer that computes feature level
polynomial kernels from class-level training data samples and iteratively
updates input image copies at inference time based on their feature kernel
differences to create an ensemble of transformed inputs. The second is a
classification system that incorporates the prediction of the undefended
network with a hard vote on the ensemble of filtered images. Our evaluations on
the CIFAR10 dataset show our system improves the robustness of an undefended
network against a variety of bounded and unbounded white-box attacks under
different distance metrics, while sacrificing little accuracy on clean images.
Against adaptive full-knowledge attackers creating end-to-end attacks, our
system successfully augments the existing robustness of adversarially trained
networks, for which our methods are most effectively applied.
- Abstract(参考訳): 深層畳み込みニューラルネットワークは、様々な自然画像の正確な分類を行うが、設計時には容易に認識でき、知覚できない摂動が画像に埋め込まれる。
本稿では,攻撃非依存かつ容易に推定できないマルチプログレッシブトレーニング,入力変換,画像アンサンブルシステムを設計する。
我々のシステムは2つの新しい特徴を取り入れている。
1つ目は、クラスレベルのトレーニングデータサンプルから特徴レベル多項式カーネルを計算し、特徴カーネルの違いに基づいて入力画像コピーを推論時に反復的に更新し、変換された入力のアンサンブルを作成する変換層である。
2つ目は、未定義のネットワークの予測をフィルター画像のアンサンブルにハード投票で組み込んだ分類システムである。
CIFAR10データセットを用いた評価では, クリーンな画像にほとんど精度を犠牲にしつつ, 距離の異なる有界・無界のホワイトボックス攻撃に対する無防備なネットワークの堅牢性の向上が示されている。
エンド・ツー・エンド・エンド・アタックを発生させる適応的なフル知識攻撃に対して、我々のシステムは敵に訓練されたネットワークの既存の堅牢性を高めることに成功した。
関連論文リスト
- Unsupervised convolutional neural network fusion approach for change
detection in remote sensing images [1.892026266421264]
我々は、変化検出のための全く教師なし浅層畳み込みニューラルネットワーク(USCNN)融合アプローチを導入する。
我々のモデルには3つの特徴がある: トレーニングプロセス全体は教師なしで行われ、ネットワークアーキテクチャは浅く、目的関数はスパースである。
4つの実リモートセンシングデータセットの実験結果から,提案手法の有効性と有効性が確認された。
論文 参考訳(メタデータ) (2023-11-07T03:10:17Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
きめ細かい画像認識は、長年続くコンピュータビジョンの課題である。
本稿では,識別領域損失問題を軽減するため,特徴レベルのトレーニングデータを多様化することを提案する。
本手法は,いくつかの人気分類ネットワーク上での一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2023-09-01T11:15:50Z) - Random Weights Networks Work as Loss Prior Constraint for Image
Restoration [50.80507007507757]
「画像復元の優先制約としてランダムウェイトネットワークを機能させることができる」という信念を提示する。」
我々の信念は、計算コストのトレーニングやテストなしに、既存のネットワークに直接挿入することができる。
強調しておきたいのは、損失関数の領域を刺激し、現在無視されている状態を保存することです。
論文 参考訳(メタデータ) (2023-03-29T03:43:51Z) - Adversarial Sampling for Fairness Testing in Deep Neural Network [0.0]
与えられたデータセット内のさまざまなクラスの画像にわたるディープニューラルネットワークモデルの予測において、公正性をテストするための逆サンプリング。
我々は、元の画像でニューラルネットワークモデルを訓練し、摂動または攻撃された画像でモデルをトレーニングすることはなかった。
モデルに逆方向サンプリングを施すと、逆方向サンプルが属する画像のもともとのカテゴリ/クラスを予測することができた。
論文 参考訳(メタデータ) (2023-03-06T03:55:37Z) - ResMLP: Feedforward networks for image classification with
data-efficient training [73.26364887378597]
画像分類のための多層パーセプトロン上に構築されたアーキテクチャであるResMLPを提案する。
Timmライブラリと事前トレーニングされたモデルに基づいたコードを共有します。
論文 参考訳(メタデータ) (2021-05-07T17:31:44Z) - Deep Features for training Support Vector Machine [16.795405355504077]
本稿では,訓練済みcnnから抽出した特徴に基づく汎用コンピュータビジョンシステムを開発した。
複数の学習特徴を単一の構造に組み合わせ、異なる画像分類タスクに取り組んでいます。
論文 参考訳(メタデータ) (2021-04-08T03:13:09Z) - Learning degraded image classification with restoration data fidelity [0.0]
広く使用されている4つの分類ネットワークにおける分解型およびレベルの影響について検討する。
本稿では,事前学習したネットワークで得られた画像特徴を忠実度マップを用いて校正する手法を提案する。
その結果,提案手法は画像劣化による影響を緩和する有望な解であることがわかった。
論文 参考訳(メタデータ) (2021-01-23T23:47:03Z) - Encoding Robustness to Image Style via Adversarial Feature Perturbations [72.81911076841408]
我々は、画像画素ではなく特徴統計を直接摂動することで、頑健なモデルを生成することで、敵の訓練に適応する。
提案手法であるAdvBN(Adversarial Batch Normalization)は,トレーニング中に最悪の機能摂動を発生させる単一ネットワーク層である。
論文 参考訳(メタデータ) (2020-09-18T17:52:34Z) - Learning to Learn Parameterized Classification Networks for Scalable
Input Images [76.44375136492827]
畳み込みニューラルネットワーク(CNN)は、入力解像度の変化に関して予測可能な認識動作を持たない。
我々はメタラーナーを用いて、様々な入力スケールのメインネットワークの畳み込み重みを生成する。
さらに、異なる入力解像度に基づいて、モデル予測よりもフライでの知識蒸留を利用する。
論文 参考訳(メタデータ) (2020-07-13T04:27:25Z) - Verification of Deep Convolutional Neural Networks Using ImageStars [10.44732293654293]
畳み込みニューラルネットワーク(CNN)は、多くの現実世界で最先端のアプリケーションを再定義している。
CNNは敵の攻撃に対して脆弱であり、入力のわずかな変更は出力の急激な変更につながる可能性がある。
本稿では,VGG16やVGG19などの実世界のCNNを,ImageNet上で高い精度で処理可能なセットベースフレームワークについて述べる。
論文 参考訳(メタデータ) (2020-04-12T00:37:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。