論文の概要: Adaptive Learning for Service Monitoring Data
- arxiv url: http://arxiv.org/abs/2208.12281v1
- Date: Thu, 25 Aug 2022 18:06:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-29 13:12:53.218958
- Title: Adaptive Learning for Service Monitoring Data
- Title(参考訳): サービス監視データのための適応学習
- Authors: Farzana Anowar, Samira Sadaoui, Hardik Dalal
- Abstract要約: 本研究では,Learn++を用いた適応型分類手法を開発した。
産業アプリケーションから得られた連続したデータチャンクを用いて予測器の性能を漸進的に評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Service monitoring applications continuously produce data to monitor their
availability. Hence, it is critical to classify incoming data in real-time and
accurately. For this purpose, our study develops an adaptive classification
approach using Learn++ that can handle evolving data distributions. This
approach sequentially predicts and updates the monitoring model with new data,
gradually forgets past knowledge and identifies sudden concept drift. We employ
consecutive data chunks obtained from an industrial application to evaluate the
performance of the predictors incrementally.
- Abstract(参考訳): サービス監視アプリケーションは、可用性を監視するために継続的にデータを生成する。
したがって、入力データをリアルタイムかつ正確に分類することが重要である。
そこで本研究では,Learn++を用いた適応型分類手法を開発した。
このアプローチは、監視モデルを新しいデータで逐次予測し、更新し、徐々に過去の知識を忘れ、突然のコンセプトドリフトを特定する。
産業アプリケーションから得られた連続したデータチャンクを用いて予測器の性能を漸進的に評価する。
関連論文リスト
- Robust Machine Learning by Transforming and Augmenting Imperfect
Training Data [6.928276018602774]
この論文は、現代の機械学習のいくつかのデータ感度を探求する。
まず、トレーニングデータで測定された事前の人間の識別をMLが符号化するのを防ぐ方法について論じる。
次に、トレーニング中に予測忠実度を提供するが、デプロイ時に信頼性が低い突発的特徴を含むデータから学習する問題について論じる。
論文 参考訳(メタデータ) (2023-12-19T20:49:28Z) - Self-supervised Activity Representation Learning with Incremental Data:
An Empirical Study [7.782045150068569]
本研究では,時系列分類タスクにおける自己教師付き表現学習モデルの利用が及ぼす影響について検討する。
4つの公開データセットにおいて,ラベル付きデータのサイズ,分布,ソースが最終分類性能に与える影響を解析した。
論文 参考訳(メタデータ) (2023-05-01T01:39:55Z) - Investigating Enhancements to Contrastive Predictive Coding for Human
Activity Recognition [7.086647707011785]
コントラスト予測符号化(Contrastive Predictive Coding, CPC)は、時系列データの特性を活用して効果的な表現を学習する手法である。
本研究では,アーキテクチャ,アグリゲータネットワーク,今後のタイムステップ予測を体系的に検討し,CPCの強化を提案する。
提案手法は6つのターゲットデータセットのうち4つを大幅に改善し,アプリケーションシナリオを広範囲に拡張する能力を示した。
論文 参考訳(メタデータ) (2022-11-11T12:54:58Z) - Time-Varying Propensity Score to Bridge the Gap between the Past and Present [104.46387765330142]
本稿では,データ分布の段階的変化を検出するための時間変化確率スコアを提案する。
実装のさまざまな方法を示し、さまざまな問題について評価する。
論文 参考訳(メタデータ) (2022-10-04T07:21:49Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
対象データに事前学習されたモデルを微調整することは、多くのディープラーニングアプリケーションで広く利用されている。
近年の研究では、スクラッチからのトレーニングが、この事前トレーニング戦略に比較して、最終的なパフォーマンスを示すことが実証されている。
本稿では,対象タスクの一般化を改善するために,事前学習データからサブセットを選択する新しい選択戦略を提案する。
論文 参考訳(メタデータ) (2021-11-24T06:18:32Z) - Using Time-Series Privileged Information for Provably Efficient Learning
of Prediction Models [6.7015527471908625]
本研究では,学習中に特権情報を利用する教師付きモデルを用いて,今後の成果を予測する。
特権情報は、予測の基準時間と将来の結果の間に観察される時系列のサンプルを含む。
我々のアプローチは、特にデータが不足している場合に、古典的な学習よりも好まれることを示す。
論文 参考訳(メタデータ) (2021-10-28T10:07:29Z) - Online Continual Learning with Natural Distribution Shifts: An Empirical
Study with Visual Data [101.6195176510611]
オンライン」連続学習は、情報保持とオンライン学習の有効性の両方を評価することができる。
オンライン連続学習では、入力される各小さなデータをまずテストに使用し、次にトレーニングセットに追加し、真にオンラインにします。
本稿では,大規模かつ自然な分布変化を示すオンライン連続視覚学習のための新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2021-08-20T06:17:20Z) - Negative Data Augmentation [127.28042046152954]
負のデータ拡張サンプルは、データ分散のサポートに関する情報を提供することを示す。
我々は、NDAを識別器の合成データの追加源として利用する新しいGAN訓練目標を提案する。
実験により,本手法で訓練したモデルでは,異常検出能力の向上とともに条件付き・条件付き画像生成の改善を実現している。
論文 参考訳(メタデータ) (2021-02-09T20:28:35Z) - ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for
Semi-supervised Continual Learning [52.831894583501395]
連続学習は、入力されたデータが完全にラベル付けされていると仮定し、実際のアプリケーションでは適用できないかもしれない。
我々は、条件付き生成逆数ネットワーク(GAN)を用いた分類器を相互に学習するために、識別器整合(ORDisCo)を用いたディープオンライン再生を提案する。
ORDisCo が SSCL の様々な半教師付き学習ベンチマークデータセットで大幅なパフォーマンス向上を達成していることを示します。
論文 参考訳(メタデータ) (2021-01-02T09:04:14Z) - A Survey on Self-supervised Pre-training for Sequential Transfer
Learning in Neural Networks [1.1802674324027231]
移動学習のための自己教師付き事前学習は、ラベルのないデータを用いて最先端の結果を改善する技術として、ますます人気が高まっている。
本稿では,自己指導型学習と伝達学習の分類学の概要を述べるとともに,各領域にまたがる事前学習タスクを設計するためのいくつかの顕著な手法を強調した。
論文 参考訳(メタデータ) (2020-07-01T22:55:48Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
オフラインで収集されたデータセット(観測データ)を組み込んで、オンライン環境でのサンプル効率を改善する方法について検討する。
提案手法は,観測データを効率よく組み込んだ,分解された楽観的値反復 (DOVI) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-22T14:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。