論文の概要: Self-supervised Activity Representation Learning with Incremental Data:
An Empirical Study
- arxiv url: http://arxiv.org/abs/2305.00619v1
- Date: Mon, 1 May 2023 01:39:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-02 14:19:22.461415
- Title: Self-supervised Activity Representation Learning with Incremental Data:
An Empirical Study
- Title(参考訳): インクリメンタルデータを用いた自己教師型活動表現学習 : 実証的研究
- Authors: Jason Liu, Shohreh Deldari, Hao Xue, Van Nguyen, Flora D. Salim
- Abstract要約: 本研究では,時系列分類タスクにおける自己教師付き表現学習モデルの利用が及ぼす影響について検討する。
4つの公開データセットにおいて,ラベル付きデータのサイズ,分布,ソースが最終分類性能に与える影響を解析した。
- 参考スコア(独自算出の注目度): 7.782045150068569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of mobile sensing environments, various sensors on mobile
devices continually generate a vast amount of data. Analyzing this
ever-increasing data presents several challenges, including limited access to
annotated data and a constantly changing environment. Recent advancements in
self-supervised learning have been utilized as a pre-training step to enhance
the performance of conventional supervised models to address the absence of
labelled datasets. This research examines the impact of using a self-supervised
representation learning model for time series classification tasks in which
data is incrementally available. We proposed and evaluated a workflow in which
a model learns to extract informative features using a corpus of unlabeled time
series data and then conducts classification on labelled data using features
extracted by the model. We analyzed the effect of varying the size,
distribution, and source of the unlabeled data on the final classification
performance across four public datasets, including various types of sensors in
diverse applications.
- Abstract(参考訳): モバイルセンシング環境では、モバイルデバイス上の様々なセンサーが大量のデータを連続的に生成する。
この絶え間ないデータの解析には、注釈付きデータへのアクセス制限や、絶えず変化する環境など、いくつかの課題がある。
近年の自己教師付き学習の進歩は,ラベル付きデータセットの欠如に対処する従来の教師付きモデルの性能向上のための事前学習段階として活用されている。
本研究では,データを漸進的に利用できる時系列分類タスクに対して,自己教師付き表現学習モデルが与える影響について検討する。
本研究では,ラベルなし時系列データのコーパスを用いて情報的特徴を抽出し,モデルから抽出した特徴を用いてラベル付きデータの分類を行うワークフローを提案し評価した。
各種センサを含む4つの公開データセットにおいて,ラベル付きデータのサイズ,分布,ソースが最終分類性能に与える影響を解析した。
関連論文リスト
- An End-to-End Model for Time Series Classification In the Presence of Missing Values [25.129396459385873]
時系列分析では,データ不足による時系列分類が問題となっている。
本研究では,データ計算と表現学習を単一のフレームワーク内で統一するエンドツーエンドニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2024-08-11T19:39:12Z) - Scaling Laws for the Value of Individual Data Points in Machine Learning [55.596413470429475]
個々のデータポイントの値のスケーリング行動を調べることによって、新しい視点を導入する。
スケーリング法則を支持するための学習理論を提供し、それが様々なモデルクラスにまたがっていることを実証的に観察する。
私たちの研究は、個々のデータポイントの値のスケーリング特性を理解し、活用するための第一歩です。
論文 参考訳(メタデータ) (2024-05-30T20:10:24Z) - infoVerse: A Universal Framework for Dataset Characterization with
Multidimensional Meta-information [68.76707843019886]
infoVerseは、データセットの特徴付けのための普遍的なフレームワークである。
infoVerseは、様々なモデル駆動メタ情報を統合することで、データセットの多次元特性をキャプチャする。
実世界の3つのアプリケーション(データプルーニング、アクティブラーニング、データアノテーション)において、infoVerse空間で選択されたサンプルは、強いベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2023-05-30T18:12:48Z) - Data Valuation Without Training of a Model [8.89493507314525]
本稿では、ニューラルネットワークの一般化における個々のインスタンスの影響を定量化するために、複雑性ギャップスコアと呼ばれるトレーニング不要なデータ評価スコアを提案する。
提案したスコアは、インスタンスの不規則性を定量化し、トレーニング中に各データインスタンスがネットワークパラメータの総移動にどの程度貢献するかを測定する。
論文 参考訳(メタデータ) (2023-01-03T02:19:20Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
ニューラルネットワークのトレーニングに属性マップを利用すると、モデルの正規化が向上し、性能が向上することを示す。
特に、我々の汎用的なドメインに依存しないアプローチは、ビジョン、自然言語処理、時系列タスクにおける最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-30T13:34:46Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - Representation Matters: Assessing the Importance of Subgroup Allocations
in Training Data [85.43008636875345]
訓練データにおける多様な表現は,サブグループのパフォーマンス向上と集団レベルの目標達成の鍵である。
分析と実験は、データセット構成がパフォーマンスにどのように影響するかを説明し、既存のデータにおけるトレンドとドメイン知識を用いて、意図的かつ客観的なデータセット設計を導くのに役立つ構成結果を提供する。
論文 参考訳(メタデータ) (2021-03-05T00:27:08Z) - SelfHAR: Improving Human Activity Recognition through Self-training with
Unlabeled Data [9.270269467155547]
SelfHARは、ラベルなしデータセットを利用して小さなラベル付きデータセットを補完する半教師付きモデルである。
提案手法は教師による自己学習と,ラベル付きデータセットとラベル付きデータセットの知識を融合する。
SelfHARはデータ効率が高く、教師付きアプローチの10倍のラベル付きデータを使用して、同様のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-02-11T15:40:35Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
トラフィックシーンの面白さを定量化する多様な基準を活用した新たなデータ選択手法を提案する。
実験の結果,提案するキュレーションパイプラインは,より汎用的で高いパフォーマンスをもたらすデータセットを選択できることが判明した。
論文 参考訳(メタデータ) (2021-01-16T23:45:02Z) - Invariant Feature Learning for Sensor-based Human Activity Recognition [11.334750079923428]
被験者やデバイス間で共有される共通情報を抽出する不変特徴学習フレームワーク(IFLF)を提案する。
実験により、IFLFは、一般的なオープンデータセットと社内データセットをまたいだ主題とデバイスディバージョンの両方を扱うのに効果的であることが示された。
論文 参考訳(メタデータ) (2020-12-14T21:56:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。