論文の概要: GRASP: Guiding model with RelAtional Semantics using Prompt
- arxiv url: http://arxiv.org/abs/2208.12494v2
- Date: Mon, 29 Aug 2022 05:39:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-30 11:12:58.241478
- Title: GRASP: Guiding model with RelAtional Semantics using Prompt
- Title(参考訳): GRASP: Promptを用いたRelAtional Semanticsを用いたガイダンスモデル
- Authors: Junyoung Son, Jinsung Kim, Jungwoo Lim, Heuiseok Lim
- Abstract要約: 本稿では Prompt (GRASP) を用いたRelAtional Semantics を用いた誘導モデルを提案する。
我々は、プロンプトベースの微調整アプローチを採用し、引数を意識したプロンプトマーカー戦略を用いて、ある対話における関係意味的手がかりをキャプチャする。
実験では、DialogREデータセット上でのF1とF1cのスコアの観点から、GRASPの最先端のパフォーマンスが評価された。
- 参考スコア(独自算出の注目度): 3.1275060062551208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The dialogue-based relation extraction (DialogRE) task aims to predict the
relations between argument pairs that appear in dialogue. Most previous studies
utilize fine-tuning pre-trained language models (PLMs) only with extensive
features to supplement the low information density of the dialogue by multiple
speakers. To effectively exploit inherent knowledge of PLMs without extra
layers and consider scattered semantic cues on the relation between the
arguments, we propose a Guiding model with RelAtional Semantics using Prompt
(GRASP). We adopt a prompt-based fine-tuning approach and capture relational
semantic clues of a given dialogue with 1) an argument-aware prompt marker
strategy and 2) the relational clue detection task. In the experiments, GRASP
achieves state-of-the-art performance in terms of both F1 and F1c scores on a
DialogRE dataset even though our method only leverages PLMs without adding any
extra layers.
- Abstract(参考訳): 対話に基づく関係抽出(ダイアログ)タスクは、対話に現れる議論ペア間の関係を予測することを目的としている。
これまでのほとんどの研究では、複数の話者による対話の低情報密度を補うために、微調整事前学習言語モデル(PLM)を広範囲にしか用いていない。
余分な層を持たずにplmの固有知識を効果的に活用し、引数間の関係に関する散在した意味的手がかりを検討するため、promp(grasp)を用いた関係意味論を用いた指導モデルを提案する。
我々は,プロンプトに基づく微調整手法を採用し,与えられた対話の意味的手がかりをキャプチャする。
1)引数認識型プロンプトマーカー戦略と
2) 関係手がかり検出タスク。
実験では, GRASPは, 余分なレイヤを追加せずにPLMのみを利用するにもかかわらず, ダイアログREデータセット上でのF1とF1cのスコアで最先端のパフォーマンスを達成する。
関連論文リスト
- Interactive Text-to-Image Retrieval with Large Language Models: A Plug-and-Play Approach [33.231639257323536]
本稿では,対話型テキスト・画像検索タスクにおける対話型コンテキストクエリの問題に対処する。
対話形式のコンテキストを再構成することにより、既存の視覚的対話データから検索モデルを微調整する必要がなくなる。
対象画像の属性に関する非冗長な質問を生成するために,LLM質問機を構築した。
論文 参考訳(メタデータ) (2024-06-05T16:09:01Z) - SSP: Self-Supervised Post-training for Conversational Search [63.28684982954115]
本稿では,対話型検索モデルを効率的に初期化するための3つの自己教師型タスクを備えた学習後パラダイムであるフルモデル(モデル)を提案する。
提案手法の有効性を検証するために,CAsT-19 と CAsT-20 の2つのベンチマークデータセットを用いて,会話検索タスクにモデルにより訓練後の会話エンコーダを適用した。
論文 参考訳(メタデータ) (2023-07-02T13:36:36Z) - Pre-training Multi-party Dialogue Models with Latent Discourse Inference [85.9683181507206]
我々は、多人数対話の会話構造、すなわち、各発話が応答する相手を理解するモデルを事前訓練する。
ラベル付きデータを完全に活用するために,談話構造を潜在変数として扱い,それらを共同で推論し,談話認識モデルを事前学習することを提案する。
論文 参考訳(メタデータ) (2023-05-24T14:06:27Z) - Frugal Prompting for Dialog Models [17.048111072193933]
本研究では,大規模言語モデル(LLM)を用いた対話システム構築のための異なるアプローチについて検討する。
即時チューニングの一環として、インストラクション、例題、現在のクエリ、追加のコンテキストを提供する様々な方法を試行する。
この研究は、最適な使用情報密度を持つダイアログ履歴の表現も分析する。
論文 参考訳(メタデータ) (2023-05-24T09:06:49Z) - Cue-CoT: Chain-of-thought Prompting for Responding to In-depth Dialogue
Questions with LLMs [59.74002011562726]
我々は、よりパーソナライズされ魅力的な応答を提供するために、新しい言語的キューに基づく思考の連鎖(textitCue-CoT)を提案する。
中国語と英語の6つのデータセットからなる詳細な対話質問を用いたベンチマークを構築した。
実験により,提案手法は,すべてのデータセットにおいて,テクステルパーフルネスとテクスチタアクセプタビリティの両方の観点から,標準的プロンプト法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-19T16:27:43Z) - SPACE-2: Tree-Structured Semi-Supervised Contrastive Pre-training for
Task-Oriented Dialog Understanding [68.94808536012371]
本稿では,限定ラベル付きダイアログと大規模未ラベルダイアログコーパスから対話表現を学習する,木構造付き事前学習会話モデルを提案する。
提案手法は,7つのデータセットと4つの一般的な対話理解タスクからなるDialoGLUEベンチマークにおいて,最新の結果が得られる。
論文 参考訳(メタデータ) (2022-09-14T13:42:50Z) - OPAL: Ontology-Aware Pretrained Language Model for End-to-End
Task-Oriented Dialogue [40.62090743056549]
本稿では、エンドツーエンドタスク指向対話(TOD)のためのオントロジー対応事前学習言語モデル(OPAL)を提案する。
チャット型対話モデルとは異なり、タスク指向対話モデルは少なくとも2つのタスク固有モジュールを満たす:対話状態トラッカー(DST)と応答生成器(RG)。
論文 参考訳(メタデータ) (2022-09-10T04:38:27Z) - CUP: Curriculum Learning based Prompt Tuning for Implicit Event Argument
Extraction [22.746071199667146]
Implicit Event argument extract (EAE) は、文書に散らばる可能性のある引数を特定することを目的としている。
本稿では,4つの学習段階によって暗黙的EAEを解消する,カリキュラム学習に基づくプロンプトチューニング(CUP)手法を提案する。
さらに,事前学習した言語モデルから関連する知識を引き出すために,プロンプトベースのエンコーダデコーダモデルを統合する。
論文 参考訳(メタデータ) (2022-05-01T16:03:54Z) - In-Context Learning for Few-Shot Dialogue State Tracking [55.91832381893181]
In-context (IC) Learning framework for few-shot dialogue state tracking (DST)を提案する。
大規模な事前訓練言語モデル(LM)は、テストインスタンスといくつかの注釈付き例を入力として取り、パラメータの更新なしに直接対話状態をデコードする。
これにより、LMは、新しいドメインやシナリオに適応する際の、以前の数ショットのDST作業と比べて、より柔軟でスケーラブルになります。
論文 参考訳(メタデータ) (2022-03-16T11:58:24Z) - Dialogue-Based Relation Extraction [53.2896545819799]
本稿では,人間による対話型関係抽出(RE)データセットDialogREを提案する。
我々は,対話型タスクと従来のREタスクの類似点と相違点の分析に基づいて,提案課題において話者関連情報が重要な役割を担っていると論じる。
実験結果から,ベストパフォーマンスモデルにおける話者認識の拡張が,標準設定と会話評価設定の両方において向上することが示された。
論文 参考訳(メタデータ) (2020-04-17T03:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。