論文の概要: SSP: Self-Supervised Post-training for Conversational Search
- arxiv url: http://arxiv.org/abs/2307.00569v1
- Date: Sun, 2 Jul 2023 13:36:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-05 15:15:46.394225
- Title: SSP: Self-Supervised Post-training for Conversational Search
- Title(参考訳): SSP:会話検索のための自己教師付きポストトレーニング
- Authors: Quan Tu, Shen Gao, Xiaolong Wu, Zhao Cao, Ji-Rong Wen and Rui Yan
- Abstract要約: 本稿では,対話型検索モデルを効率的に初期化するための3つの自己教師型タスクを備えた学習後パラダイムであるフルモデル(モデル)を提案する。
提案手法の有効性を検証するために,CAsT-19 と CAsT-20 の2つのベンチマークデータセットを用いて,会話検索タスクにモデルにより訓練後の会話エンコーダを適用した。
- 参考スコア(独自算出の注目度): 63.28684982954115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversational search has been regarded as the next-generation search
paradigm. Constrained by data scarcity, most existing methods distill the
well-trained ad-hoc retriever to the conversational retriever. However, these
methods, which usually initialize parameters by query reformulation to discover
contextualized dependency, have trouble in understanding the dialogue structure
information and struggle with contextual semantic vanishing. In this paper, we
propose \fullmodel (\model) which is a new post-training paradigm with three
self-supervised tasks to efficiently initialize the conversational search model
to enhance the dialogue structure and contextual semantic understanding.
Furthermore, the \model can be plugged into most of the existing conversational
models to boost their performance. To verify the effectiveness of our proposed
method, we apply the conversational encoder post-trained by \model on the
conversational search task using two benchmark datasets: CAsT-19 and CAsT-20.
Extensive experiments that our \model can boost the performance of several
existing conversational search methods. Our source code is available at
\url{https://github.com/morecry/SSP}.
- Abstract(参考訳): 対話型検索は次世代の検索パラダイムとみなされている。
データ不足によって制約された既存の手法のほとんどは、訓練されたアドホックレトリバーを会話レトリバーに蒸留する。
しかし、これらの手法は通常、クエリ再構成によってパラメータを初期化してコンテキスト依存を発見するが、対話構造情報の理解や文脈意味の消滅に苦慮する。
本稿では,対話構造と文脈意味理解を強化するために,対話型検索モデルを効率的に初期化するための3つの自己指導タスクを備えた新しい訓練後パラダイムである'fullmodel(\model)を提案する。
さらに、 \model は、パフォーマンスを向上させるために既存の会話モデルの多くにプラグインすることができる。
提案手法の有効性を検証するために,CAsT-19 と CAsT-20 の2つのベンチマークデータセットを用いた対話検索タスクに, \model で訓練後の会話エンコーダを適用した。
既存の対話型検索手法の性能向上を図った実験を行った。
ソースコードは \url{https://github.com/morecry/ssp} で利用可能です。
関連論文リスト
- Interactive Text-to-Image Retrieval with Large Language Models: A Plug-and-Play Approach [33.231639257323536]
本稿では,対話型テキスト・画像検索タスクにおける対話型コンテキストクエリの問題に対処する。
対話形式のコンテキストを再構成することにより、既存の視覚的対話データから検索モデルを微調整する必要がなくなる。
対象画像の属性に関する非冗長な質問を生成するために,LLM質問機を構築した。
論文 参考訳(メタデータ) (2024-06-05T16:09:01Z) - Effective and Efficient Conversation Retrieval for Dialogue State Tracking with Implicit Text Summaries [48.243879779374836]
LLM (Large Language Models) を用いたDST (Few-shot dialogue state tracking) では,会話検索を効果的かつ効率的に行うことで,学習の迅速化を図っている。
従来は検索キーやクエリとして生の対話コンテキストを使用していた。
会話のテキスト要約に基づいて会話検索を行う。
LLMに基づく会話要約器がクエリとキー生成に採用され、効果的な内部製品探索が可能となる。
論文 参考訳(メタデータ) (2024-02-20T14:31:17Z) - CONVERSER: Few-Shot Conversational Dense Retrieval with Synthetic Data
Generation [32.10366004426449]
対話型高密度検索のためのフレームワークであるConVERSERを提案する。
我々は,大言語モデルのテキスト内学習機能を利用して,検索コーパスの文節に与えられた会話クエリを生成する。
対話型検索ベンチマークOR-QuACとTREC CAsT 19の実験結果から,提案したConverSERは完全教師付きモデルに匹敵する性能を示した。
論文 参考訳(メタデータ) (2023-09-13T06:40:24Z) - GRASP: Guiding model with RelAtional Semantics using Prompt [3.1275060062551208]
本稿では Prompt (GRASP) を用いたRelAtional Semantics を用いた誘導モデルを提案する。
我々は、プロンプトベースの微調整アプローチを採用し、引数を意識したプロンプトマーカー戦略を用いて、ある対話における関係意味的手がかりをキャプチャする。
実験では、DialogREデータセット上でのF1とF1cのスコアの観点から、GRASPの最先端のパフォーマンスが評価された。
論文 参考訳(メタデータ) (2022-08-26T08:19:28Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
対話システム研究における既存の研究は、主にタスク指向の対話とチャットを独立したドメインとして扱う。
本研究では,タスク指向対話と知識ベースチップチャットを一つのモデルに効果的に統合する方法について検討する。
論文 参考訳(メタデータ) (2022-05-11T16:01:03Z) - In-Context Learning for Few-Shot Dialogue State Tracking [55.91832381893181]
In-context (IC) Learning framework for few-shot dialogue state tracking (DST)を提案する。
大規模な事前訓練言語モデル(LM)は、テストインスタンスといくつかの注釈付き例を入力として取り、パラメータの更新なしに直接対話状態をデコードする。
これにより、LMは、新しいドメインやシナリオに適応する際の、以前の数ショットのDST作業と比べて、より柔軟でスケーラブルになります。
論文 参考訳(メタデータ) (2022-03-16T11:58:24Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
マルチステージアドホックIRシステムにクエリ再構成を組み込んだ会話経路検索(ConvPR)に取り組む。
本稿では,1項の重要度推定と2項のニューラルクエリ書き換えという2つの手法を提案する。
前者に対しては、周波数に基づく信号を用いて会話コンテキストから抽出した重要な用語を用いて会話クエリを拡張する。
後者では,会話クエリを,事前訓練されたシーケンス列列列モデルを用いて,自然な,スタンドアロンの,人間の理解可能なクエリに再構成する。
論文 参考訳(メタデータ) (2020-05-05T14:30:20Z) - Conversations with Search Engines: SERP-based Conversational Response
Generation [77.1381159789032]
我々は、検索エンジンと対話するためのパイプラインを開発するために、適切なデータセット、検索・アズ・ア・会話(SaaC)データセットを作成します。
また、このデータセットを用いて、検索エンジンと対話するための最先端パイプライン(Conversations with Search Engines (CaSE))も開発しています。
CaSEは、サポートされたトークン識別モジュールとプリア・アウェア・ポインタージェネレータを導入することで最先端を向上する。
論文 参考訳(メタデータ) (2020-04-29T13:07:53Z) - MLR: A Two-stage Conversational Query Rewriting Model with Multi-task
Learning [16.88648782206587]
本稿では,シーケンスラベリングとクエリリライトのマルチタスクモデルであるMLRを提案する。
MLRは、マルチターンの会話クエリを単一のターンクエリに再構成し、ユーザの真の意図を簡潔に伝達する。
モデルをトレーニングするために,新しい中国語クエリ書き換えデータセットを構築し,その上で実験を行う。
論文 参考訳(メタデータ) (2020-04-13T08:04:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。