NeuralSI: Structural Parameter Identification in Nonlinear Dynamical
Systems
- URL: http://arxiv.org/abs/2208.12771v1
- Date: Fri, 26 Aug 2022 16:32:51 GMT
- Title: NeuralSI: Structural Parameter Identification in Nonlinear Dynamical
Systems
- Authors: Xuyang Li, Hamed Bolandi, Talal Salem, Nizar Lajnef and Vishnu Naresh
Boddeti
- Abstract summary: This paper explores a new framework, dubbed NeuralSI, for structural identification.
Our approach seeks to estimate nonlinear parameters from governing equations.
The trained model can also be extrapolated under both standard and extreme conditions.
- Score: 9.77270939559057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structural monitoring for complex built environments often suffers from
mismatch between design, laboratory testing, and actual built parameters.
Additionally, real-world structural identification problems encounter many
challenges. For example, the lack of accurate baseline models, high
dimensionality, and complex multivariate partial differential equations (PDEs)
pose significant difficulties in training and learning conventional data-driven
algorithms. This paper explores a new framework, dubbed NeuralSI, for
structural identification by augmenting PDEs that govern structural dynamics
with neural networks. Our approach seeks to estimate nonlinear parameters from
governing equations. We consider the vibration of nonlinear beams with two
unknown parameters, one that represents geometric and material variations, and
another that captures energy losses in the system mainly through damping. The
data for parameter estimation is obtained from a limited set of measurements,
which is conducive to applications in structural health monitoring where the
exact state of an existing structure is typically unknown and only a limited
amount of data samples can be collected in the field. The trained model can
also be extrapolated under both standard and extreme conditions using the
identified structural parameters. We compare with pure data-driven Neural
Networks and other classical Physics-Informed Neural Networks (PINNs). Our
approach reduces both interpolation and extrapolation errors in displacement
distribution by two to five orders of magnitude over the baselines. Code is
available at https://github.com/human-analysis/neural-structural-identification
Related papers
- Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks [0.0]
This paper explores the use of Physics-Informed Neural Networks (PINNs) for the identification and estimation of dynamical systems.
PINNs offer a unique advantage by embedding known physical laws directly into the neural network's loss function, allowing for simple embedding of complex phenomena.
The results demonstrate that PINNs deliver an efficient tool across all aforementioned tasks, even in presence of modelling errors.
arXiv Detail & Related papers (2024-10-02T08:58:30Z) - InVAErt networks for amortized inference and identifiability analysis of lumped parameter hemodynamic models [0.0]
In this study, we use inVAErt networks, a neural network-based, data-driven framework for enhanced digital twin analysis of stiff dynamical systems.
We demonstrate the flexibility and effectiveness of inVAErt networks in the context of physiological inversion of a six-compartment lumped parameter hemodynamic model from synthetic data to real data with missing components.
arXiv Detail & Related papers (2024-08-15T17:07:40Z) - Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [73.81105275628751]
Finding all structures compatible with reflectometry data is computationally prohibitive for standard algorithms.
We address this lack of reliability with a probabilistic deep learning method that identifies all realistic structures in seconds.
Our method, Prior-Amortized Neural Posterior Estimation (PANPE), combines simulation-based inference with novel adaptive priors.
arXiv Detail & Related papers (2024-07-26T10:29:16Z) - Deep learning for full-field ultrasonic characterization [7.120879473925905]
This study takes advantage of recent advances in machine learning to establish a physics-based data analytic platform.
Two logics, namely the direct inversion and physics-informed neural networks (PINNs), are explored.
arXiv Detail & Related papers (2023-01-06T05:01:05Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
Ordinary Differential Equations (ODEs) have recently gained a lot of attention in machine learning.
theoretical aspects, e.g., identifiability and properties of statistical estimation are still obscure.
This paper derives a sufficient condition for the identifiability of homogeneous linear ODE systems from a sequence of equally-spaced error-free observations sampled from a single trajectory.
arXiv Detail & Related papers (2022-10-12T06:46:38Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
This paper develops a new iterative learning algorithm for complex turbulent systems with partial observations.
It alternates between identifying model structures, recovering unobserved variables, and estimating parameters.
Numerical experiments show that the new algorithm succeeds in identifying the model structure and providing suitable parameterizations for many complex nonlinear systems.
arXiv Detail & Related papers (2022-08-19T00:35:03Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Parameter Estimation with Dense and Convolutional Neural Networks
Applied to the FitzHugh-Nagumo ODE [0.0]
We present deep neural networks using dense and convolutional layers to solve an inverse problem, where we seek to estimate parameters of a Fitz-Nagumo model.
We demonstrate that deep neural networks have the potential to estimate parameters in dynamical models and processes, and they are capable of predicting parameters accurately for the framework.
arXiv Detail & Related papers (2020-12-12T01:20:42Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.