論文の概要: Riesz-Quincunx-UNet Variational Auto-Encoder for Satellite Image
Denoising
- arxiv url: http://arxiv.org/abs/2208.12810v1
- Date: Thu, 25 Aug 2022 19:51:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-30 13:35:47.888635
- Title: Riesz-Quincunx-UNet Variational Auto-Encoder for Satellite Image
Denoising
- Title(参考訳): 衛星画像復調用Riesz-Quincunx-UNet変分自動エンコーダ
- Authors: Duy H. Thai and Xiqi Fei and Minh Tri Le and Andreas Z\"ufle and
Konrad Wessels
- Abstract要約: 衛星画像のノイズ低減に使用される画像および時系列分解のためのハイブリッドRQUNet-VAE方式を提案する。
また,本手法をマルチバンド衛星画像に適用し,画像の分解,画像分割,拡散による時系列分解,画像分割などを行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiresolution deep learning approaches, such as the U-Net architecture,
have achieved high performance in classifying and segmenting images. However,
these approaches do not provide a latent image representation and cannot be
used to decompose, denoise, and reconstruct image data. The U-Net and other
convolutional neural network (CNNs) architectures commonly use pooling to
enlarge the receptive field, which usually results in irreversible information
loss. This study proposes to include a Riesz-Quincunx (RQ) wavelet transform,
which combines 1) higher-order Riesz wavelet transform and 2) orthogonal
Quincunx wavelets (which have both been used to reduce blur in medical images)
inside the U-net architecture, to reduce noise in satellite images and their
time-series. In the transformed feature space, we propose a variational
approach to understand how random perturbations of the features affect the
image to further reduce noise. Combining both approaches, we introduce a hybrid
RQUNet-VAE scheme for image and time series decomposition used to reduce noise
in satellite imagery. We present qualitative and quantitative experimental
results that demonstrate that our proposed RQUNet-VAE was more effective at
reducing noise in satellite imagery compared to other state-of-the-art methods.
We also apply our scheme to several applications for multi-band satellite
images, including: image denoising, image and time-series decomposition by
diffusion and image segmentation.
- Abstract(参考訳): u-netアーキテクチャなどのマルチレゾリューションディープラーニングアプローチは、イメージの分類とセグメンテーションにおいて高いパフォーマンスを達成している。
しかし、これらの手法は遅延画像表現を提供しておらず、画像データの分解、分解、再構成には使用できない。
U-Netや他の畳み込みニューラルネットワーク(CNN)アーキテクチャは一般的に、プールを使用して受容領域を拡大し、通常は不可逆的な情報損失をもたらす。
本研究では、Riesz-Quincunx(RQ)ウェーブレット変換を合成する。
1)Rieszウェーブレット変換と高次変換
2)U-netアーキテクチャ内の直交のQuinncunxウェーブレット(どちらも医療画像のぼやけを低減するために使用されている)は,衛星画像とその時系列のノイズを低減する。
変換された特徴空間では、特徴のランダムな摂動が画像にどう影響するかを理解し、さらにノイズを減らすための変分的アプローチを提案する。
両手法を組み合わせて,衛星画像のノイズ低減に使用される画像および時系列分解のためのハイブリッドRQUNet-VAE方式を提案する。
提案したRQUNet-VAEは,他の最先端手法と比較して,衛星画像のノイズ低減に有効であることを示す定性的,定量的な実験結果を示す。
また,本手法をマルチバンド衛星画像に適用し,画像のデノイズ化,画像の拡散と画像分割による時系列分解を行う。
関連論文リスト
- DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Low-Light Enhancement in the Frequency Domain [24.195131201768096]
低照度画像には、可視性、高密度ノイズ、偏光色がよく見られる。
周波数領域で学習した新しい残差多重ウェーブレット畳み込みニューラルネットワークR2-MWCNNを提案する。
このエンドツーエンドのトレーニング可能なネットワークは、マルチレベル離散ウェーブレット変換を使用して入力特徴写像を異なる周波数に分割し、より優れたノイズの影響をもたらす。
論文 参考訳(メタデータ) (2023-06-29T08:39:34Z) - Multi-stage image denoising with the wavelet transform [125.2251438120701]
深部畳み込みニューラルネットワーク(Deep Convolutional Neural Network, CNN)は、正確な構造情報を自動マイニングすることで、画像の復調に使用される。
動的畳み込みブロック(DCB)、2つのカスケードウェーブレット変換および拡張ブロック(WEB)、残留ブロック(RB)の3段階を経由した、MWDCNNによるCNNの多段階化を提案する。
論文 参考訳(メタデータ) (2022-09-26T03:28:23Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
本研究では,残差畳み込み層の局所モデリング能力とスウィントランスブロックの非局所モデリング能力を組み込むスウィンコンブブロックを提案する。
トレーニングデータ合成のために,異なる種類のノイズを考慮した実用的なノイズ劣化モデルの設計を行う。
AGWN除去と実画像復号化の実験は、新しいネットワークアーキテクチャ設計が最先端の性能を達成することを実証している。
論文 参考訳(メタデータ) (2022-03-24T18:11:31Z) - Exploring Inter-frequency Guidance of Image for Lightweight Gaussian
Denoising [1.52292571922932]
本稿では,周波数帯域を低域から高域に漸進的に洗練するために,IGNetと呼ばれる新しいネットワークアーキテクチャを提案する。
この設計では、より周波数間先行と情報を利用するため、モデルサイズは軽量化でき、競争結果も維持できる。
論文 参考訳(メタデータ) (2021-12-22T10:35:53Z) - Unsupervised Single Image Super-resolution Under Complex Noise [60.566471567837574]
本稿では,一般のSISRタスクを未知の劣化で扱うためのモデルベースunsupervised SISR法を提案する。
提案手法は, より小さなモデル (0.34M vs. 2.40M) だけでなく, より高速な技術 (SotA) 法 (約1dB PSNR) の現況を明らかに超えることができる。
論文 参考訳(メタデータ) (2021-07-02T11:55:40Z) - TWIST-GAN: Towards Wavelet Transform and Transferred GAN for
Spatio-Temporal Single Image Super Resolution [4.622977798361014]
単一画像スーパーレゾリューション(sisr)は、空間解像度の低いリモートセンシング画像から、微細な空間解像度を持つ高解像度画像を生成する。
深層学習とGAN(Generative Adversarial Network)は、単一画像超解像(SISR)の課題を突破した。
論文 参考訳(メタデータ) (2021-04-20T22:12:38Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
本稿では,ISTAアルゴリズムの展開に基づく時空間領域におけるサブNyquistサンプルからの再構成手法を提案する。
本手法は,高品質な撮像性能を確保しつつ,配列要素数,サンプリングレート,計算時間を削減できる。
論文 参考訳(メタデータ) (2021-03-01T19:19:38Z) - Joint Frequency and Image Space Learning for MRI Reconstruction and
Analysis [7.821429746599738]
本稿では、周波数空間データから再構成するための汎用的なビルディングブロックとして、周波数と画像の特徴表現を明示的に組み合わせたニューラルネットワーク層が利用できることを示す。
提案した共同学習方式により、周波数空間に固有のアーティファクトの補正と画像空間表現の操作を両立させ、ネットワークのすべての層でコヒーレントな画像構造を再構築することができる。
論文 参考訳(メタデータ) (2020-07-02T23:54:46Z) - Attention Based Real Image Restoration [48.933507352496726]
深層畳み込みニューラルネットワークは、合成劣化を含む画像に対してより良い性能を発揮する。
本稿では,新しい1段ブラインド実画像復元ネットワーク(R$2$Net)を提案する。
論文 参考訳(メタデータ) (2020-04-26T04:21:49Z) - Spatial-Adaptive Network for Single Image Denoising [14.643663950015334]
本稿では,効率的な単一画像ブラインドノイズ除去のための空間適応型雑音除去ネットワーク(SADNet)を提案する。
本手法は, 定量的かつ視覚的に, 最先端の復調法を超越することができる。
論文 参考訳(メタデータ) (2020-01-28T12:24:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。