論文の概要: Unified Bayesian Frameworks for Multi-criteria Decision-making Problems
- arxiv url: http://arxiv.org/abs/2208.13390v4
- Date: Wed, 6 Sep 2023 13:44:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 20:20:11.190369
- Title: Unified Bayesian Frameworks for Multi-criteria Decision-making Problems
- Title(参考訳): 多基準決定問題に対する統一ベイズ的枠組み
- Authors: Majid Mohammadi
- Abstract要約: 本稿では,多基準意思決定(MCDM)問題に対処するためのベイズ的枠組みを紹介する。
提案するフレームワークは,グループ決定問題や基準相関などのMCDMの課題に対して,統計的にエレガントな解決策を提供する。
- 参考スコア(独自算出の注目度): 2.1833781995073416
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces Bayesian frameworks for tackling various aspects of
multi-criteria decision-making (MCDM) problems, leveraging a probabilistic
interpretation of MCDM methods and challenges. By harnessing the flexibility of
Bayesian models, the proposed frameworks offer statistically elegant solutions
to key challenges in MCDM, such as group decision-making problems and criteria
correlation. Additionally, these models can accommodate diverse forms of
uncertainty in decision makers' (DMs) preferences, including normal and
triangular distributions, as well as interval preferences. To address
large-scale group MCDM scenarios, a probabilistic mixture model is developed,
enabling the identification of homogeneous subgroups of DMs. Furthermore, a
probabilistic ranking scheme is devised to assess the relative importance of
criteria and alternatives based on DM(s) preferences. Through experimentation
on various numerical examples, the proposed frameworks are validated,
demonstrating their effectiveness and highlighting their distinguishing
features in comparison to alternative methods.
- Abstract(参考訳): 本稿では,MCDM法と課題の確率論的解釈を利用して,多基準意思決定(MCDM)問題の様々な側面に取り組むためのベイズ的枠組みを紹介する。
ベイズモデルの柔軟性を活用することで、提案フレームワークは、グループ決定問題や基準相関などのMCDMの主要な課題に対する統計的にエレガントな解決策を提供する。
さらに、これらのモデルは、通常の分布や三角形の分布を含む意思決定者(DM)の選好における様々な不確実性や、インターバル選好に対応できる。
大規模グループMCDMシナリオに対処するため、確率混合モデルを開発し、DMの同種部分群の同定を可能にする。
さらに,DM選好に基づく基準と代替品の相対的重要性を評価するために,確率的ランキング方式を考案した。
様々な数値的な例を用いて,提案手法の有効性を実証し,その特徴を他の手法と比較して強調する。
関連論文リスト
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
まず最適化モデルを構築し,非単調な選好をモデル化する。
本稿では,情報量測定手法と質問選択戦略を考案し,各イテレーションにおいて最も情報に富む選択肢を特定する。
2つのインクリメンタルな選好に基づくアルゴリズムは、潜在的に単調な選好を学習するために開発された。
論文 参考訳(メタデータ) (2024-09-04T14:36:20Z) - Lexicographic optimization-based approaches to learning a representative model for multi-criteria sorting with non-monotonic criteria [5.374419989598479]
本稿では,MCS問題の代表モデルを非単調な基準で学習するためのいくつかのアプローチを提案する。
まず、いくつかの変換関数を定義して、限界値と圏閾値を UTA のような関数空間にマッピングする。
そこで我々は,MCS問題における非単調な基準をモデル化するための制約セットを構築し,意思決定者の代入事例選好情報の整合性を確認する最適化モデルを構築した。
論文 参考訳(メタデータ) (2024-09-03T05:29:05Z) - SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation [55.87169702896249]
Unsupervised Domain Adaptation (DA) は、ラベル付きソースドメインでトレーニングされたモデルを適用して、ラベルなしのターゲットドメインでデータ分散シフトをうまく実行する。
本稿では,DA手法の評価と,再重み付け,マッピング,部分空間アライメントなど,既存の浅層アルゴリズムの公平な評価を行うフレームワークを提案する。
本ベンチマークでは,現実的な検証の重要性を強調し,現実的なアプリケーションに対する実践的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-07-16T12:52:29Z) - LLM-enhanced Reranking in Recommender Systems [49.969932092129305]
リグレードはレコメンデーションシステムにおいて重要な要素であり、レコメンデーションアルゴリズムの出力を精査する上で重要な役割を果たす。
そこで我々は,様々な格付け基準をシームレスに統合する包括的格付けフレームワークを提案する。
カスタマイズ可能な入力機構も統合されており、言語モデルのフォーカスを特定の再配置のニーズに合わせることができる。
論文 参考訳(メタデータ) (2024-06-18T09:29:18Z) - A multi-criteria approach for selecting an explanation from the set of counterfactuals produced by an ensemble of explainers [4.239829789304117]
そこで本研究では,マルチ基準解析に基づいて単一対実数を選択するマルチステージアンサンブル手法を提案する。
提案手法は、検討された品質指標の魅力的な妥協値を持つ、完全に実行可能な対策を生成できる。
論文 参考訳(メタデータ) (2024-03-20T19:25:11Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - A Novel Unified Conditional Score-based Generative Framework for
Multi-modal Medical Image Completion [54.512440195060584]
我々は、スコアベース生成モデル(SGM)を活用するために、統一多モードスコアベース生成モデル(UMM-CSGM)を提案する。
UMM-CSGMは、新しいマルチインマルチアウトコンディションスコアネットワーク(mm-CSN)を用いて、クロスモーダル条件分布の包括的集合を学習する。
BraTS19データセットの実験により、UMM-CSGMは腫瘍誘発病変における不均一な増強と不規則な領域をより確実に合成できることが示された。
論文 参考訳(メタデータ) (2022-07-07T16:57:21Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Multicriteria Group Decision-Making Under Uncertainty Using Interval
Data and Cloud Models [0.0]
本稿では,データを間隔として収集する不確実性の下で,MCGDM(Multicriteria group decision making)アルゴリズムを提案する。
提案したMCGDMアルゴリズムは、データを集約し、基準の最適な重みを決定し、さらに入力を行わずに代替品をランク付けする。
提案アルゴリズムは,サイバーセキュリティ問題のケーススタディに実装され,その実現可能性と有効性を示す。
論文 参考訳(メタデータ) (2020-12-01T06:34:48Z) - Bayesian preference elicitation for multiobjective combinatorial
optimization [12.96855751244076]
DM(Decision Maker)のノイズ応答に対処できる新しいインクリメンタルな選好推論手法を提案する。
DMの選好はパラメータが未知の集約関数で表され、その不確実性はパラメータ空間上の密度関数で表されると仮定する。
論文 参考訳(メタデータ) (2020-07-29T12:28:37Z) - Application of independent component analysis and TOPSIS to deal with
dependent criteria in multicriteria decision problems [8.637110868126546]
本稿では,観測データから独立した潜伏基準のセットを推定することを目的とした新しいアプローチを提案する。
我々のアプローチの中心的な要素は、決定問題をブラインドソース分離問題として定式化することである。
我々は,TOPSISをベースとした代替品のランク付け手法を,潜在基準から検討する。
論文 参考訳(メタデータ) (2020-02-06T13:51:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。