論文の概要: Bayesian preference elicitation for multiobjective combinatorial
optimization
- arxiv url: http://arxiv.org/abs/2007.14778v1
- Date: Wed, 29 Jul 2020 12:28:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-05 20:19:01.563490
- Title: Bayesian preference elicitation for multiobjective combinatorial
optimization
- Title(参考訳): 多目的組合せ最適化のためのベイズ選好推論
- Authors: Nadjet Bourdache, Patrice Perny and Olivier Spanjaard
- Abstract要約: DM(Decision Maker)のノイズ応答に対処できる新しいインクリメンタルな選好推論手法を提案する。
DMの選好はパラメータが未知の集約関数で表され、その不確実性はパラメータ空間上の密度関数で表されると仮定する。
- 参考スコア(独自算出の注目度): 12.96855751244076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a new incremental preference elicitation procedure able to deal
with noisy responses of a Decision Maker (DM). The originality of the
contribution is to propose a Bayesian approach for determining a preferred
solution in a multiobjective decision problem involving a combinatorial set of
alternatives. We assume that the preferences of the DM are represented by an
aggregation function whose parameters are unknown and that the uncertainty
about them is represented by a density function on the parameter space.
Pairwise comparison queries are used to reduce this uncertainty (by Bayesian
revision). The query selection strategy is based on the solution of a mixed
integer linear program with a combinatorial set of variables and constraints,
which requires to use columns and constraints generation methods. Numerical
tests are provided to show the practicability of the approach.
- Abstract(参考訳): 本稿では,DM(Decision Maker)のノイズ応答に対処できる新たなインクリメンタルな選好推論手法を提案する。
コントリビューションの原点は、組合せ的な選択肢の集合を含む多目的決定問題において、好ましい解を決定するためのベイズ的アプローチを提案することである。
dm の選好はパラメータが不明な集約関数によって表現され、パラメータ空間上の密度関数によってその不確実性が表現されると仮定する。
対比較クエリは、この不確実性を低減するために使用される(ベイズ修正による)。
クエリ選択戦略は、列と制約生成メソッドを必要とする変数と制約の組合せ集合を持つ混合整数線形プログラムの解に基づいている。
このアプローチの実用性を示す数値試験が提供されている。
関連論文リスト
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
まず最適化モデルを構築し,非単調な選好をモデル化する。
本稿では,情報量測定手法と質問選択戦略を考案し,各イテレーションにおいて最も情報に富む選択肢を特定する。
2つのインクリメンタルな選好に基づくアルゴリズムは、潜在的に単調な選好を学習するために開発された。
論文 参考訳(メタデータ) (2024-09-04T14:36:20Z) - An Efficient Approach for Solving Expensive Constrained Multiobjective Optimization Problems [0.0]
効率的な確率的選択に基づく制約付き多目的EAをPSCMOEAと呼ぶ。
a) 評価された解の実現可能性と収束状態に基づく適応探索境界同定スキームのような新しい要素を含む。
ECMOPを模擬する低評価予算を用いて, 幅広い制約付き問題に対して, 数値実験を行った。
論文 参考訳(メタデータ) (2024-05-22T02:32:58Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - A multi-criteria approach for selecting an explanation from the set of counterfactuals produced by an ensemble of explainers [4.239829789304117]
そこで本研究では,マルチ基準解析に基づいて単一対実数を選択するマルチステージアンサンブル手法を提案する。
提案手法は、検討された品質指標の魅力的な妥協値を持つ、完全に実行可能な対策を生成できる。
論文 参考訳(メタデータ) (2024-03-20T19:25:11Z) - RIGA: A Regret-Based Interactive Genetic Algorithm [14.388696798649658]
そこで本研究では,多目的最適化問題を優先的精度で解くための対話型遺伝的アルゴリズムを提案する。
我々のアルゴリズムはRIGAと呼ばれ、集約関数がパラメータ内で線形であることから、任意の多目的最適化問題に適用できる。
いくつかのパフォーマンス指標(計算時間、最適性とクエリ数のギャップ)に対して、RIGAは最先端のアルゴリズムよりも優れた結果を得る。
論文 参考訳(メタデータ) (2023-11-10T13:56:15Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Global and Preference-based Optimization with Mixed Variables using Piecewise Affine Surrogates [0.6083861980670925]
本稿では,線形制約付き混合変数問題の解法として,新しいサロゲートに基づく大域的最適化アルゴリズムを提案する。
目的関数はブラックボックスとコスト対評価であり、線形制約は予測不可能な事前知識である。
本稿では,2種類の探索関数を導入し,混合整数線形計画解法を用いて実現可能な領域を効率的に探索する。
論文 参考訳(メタデータ) (2023-02-09T15:04:35Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - Variable selection for Gaussian process regression through a sparse
projection [0.802904964931021]
本稿では,ガウス過程(GP)レグレッションと統合された新しい変数選択手法を提案する。
パラメータの調整と推定の精度を,選択したベンチマーク手法を用いて評価した。
論文 参考訳(メタデータ) (2020-08-25T01:06:10Z) - Multi-Task Multicriteria Hyperparameter Optimization [77.34726150561087]
この記事は最適なハイパーパラメータを選択する問題に関する数学的定式化から始まる。
この問題を解決するMTMC法の手順を述べる。
提案手法は畳み込みニューラルネットワークを用いて画像分類問題に対して評価する。
論文 参考訳(メタデータ) (2020-02-15T12:47:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。