論文の概要: Stabilize, Decompose, and Denoise: Self-Supervised Fluoroscopy Denoising
- arxiv url: http://arxiv.org/abs/2208.14022v1
- Date: Tue, 30 Aug 2022 06:56:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-31 13:26:32.131034
- Title: Stabilize, Decompose, and Denoise: Self-Supervised Fluoroscopy Denoising
- Title(参考訳): 安定化・分解・脱ノイズ:自己監督型蛍光顕微鏡による脱ノイズ
- Authors: Ruizhou Liu, Qiang Ma, Zhiwei Cheng, Yuanyuan Lyu, Jianji Wang, S.
Kevin Zhou
- Abstract要約: フルオロスコープ(Fluoroscopy)は、X線を使って3Dオブジェクトの内部のリアルタイム2Dビデオを取得するイメージング技術である。
主に低用量X線の臨床使用による重音に悩まされる。
蛍光画像の領域知識を活用した自己監督型3段階フレームワークを提案する。
- 参考スコア(独自算出の注目度): 13.056423638426562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fluoroscopy is an imaging technique that uses X-ray to obtain a real-time 2D
video of the interior of a 3D object, helping surgeons to observe pathological
structures and tissue functions especially during intervention. However, it
suffers from heavy noise that mainly arises from the clinical use of a low dose
X-ray, thereby necessitating the technology of fluoroscopy denoising. Such
denoising is challenged by the relative motion between the object being imaged
and the X-ray imaging system. We tackle this challenge by proposing a
self-supervised, three-stage framework that exploits the domain knowledge of
fluoroscopy imaging. (i) Stabilize: we first construct a dynamic panorama based
on optical flow calculation to stabilize the non-stationary background induced
by the motion of the X-ray detector. (ii) Decompose: we then propose a novel
mask-based Robust Principle Component Analysis (RPCA) decomposition method to
separate a video with detector motion into a low-rank background and a sparse
foreground. Such a decomposition accommodates the reading habit of experts.
(iii) Denoise: we finally denoise the background and foreground separately by a
self-supervised learning strategy and fuse the denoised parts into the final
output via a bilateral, spatiotemporal filter. To assess the effectiveness of
our work, we curate a dedicated fluoroscopy dataset of 27 videos (1,568 frames)
and corresponding ground truth. Our experiments demonstrate that it achieves
significant improvements in terms of denoising and enhancement effects when
compared with standard approaches. Finally, expert rating confirms this
efficacy.
- Abstract(参考訳): フルオロスコープ(Fluoroscopy)は、X線を使って3Dオブジェクトの内部のリアルタイム2Dビデオを取得し、外科医が特に介入中に病理組織や組織機能を観察するのを助ける画像技術である。
しかし、低線量x線の臨床使用が主な原因で発生する大ノイズに苦しむため、蛍光顕微鏡技術が必要となる。
このようなノイズは、被写体とx線イメージングシステムとの間の相対運動に挑戦される。
本稿では,蛍光画像の領域知識を活用した自己監督型3段階フレームワークを提案する。
安定化:まず光学フロー計算に基づいて動的パノラマを構築し,X線検出器の運動によって誘導される非定常背景を安定化させる。
(II) 分割: マスクを用いたロバスト原理成分分析(RPCA)分解法を提案し, 検出動作を伴う映像を低ランク背景とスパースフォアグラウンドに分離する。
このような分解は専門家の読書習慣を満たす。
(iii)デノワーズ:最終的に、背景と前景を自己教師付き学習戦略によって別々に弁別し、その弁別された部分を2つの時空間フィルターで最終出力に融合させる。
本研究の有効性を評価するために,27本の映像(1,568フレーム)と対応する基底真理のフルオロスコープデータセットを収集した。
本実験は, 標準的なアプローチと比較して, 騒音低減効果, 改善効果の面で著しく向上したことを示す。
最後に、専門家の評価はこの効果を確認します。
関連論文リスト
- Unsupervised Training of a Dynamic Context-Aware Deep Denoising Framework for Low-Dose Fluoroscopic Imaging [6.130738760059542]
フルオロスコープは医用画像におけるリアルタイムX線可視化に重要である。
低線量画像はノイズによって損なわれ、診断精度に影響を及ぼす可能性がある。
蛍光画像系列を動的に認識する教師なし学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T13:39:31Z) - DiffuX2CT: Diffusion Learning to Reconstruct CT Images from Biplanar X-Rays [41.393567374399524]
条件拡散過程として超スパースX線からのCT再構成をモデル化したDiffuX2CTを提案する。
これにより、DiffuX2CTは2次元X線から3次元構造情報を復元できる構造制御可能な再構成を実現する。
コントリビューションとして,LumbarVと呼ばれる実世界の腰椎CTデータセットを新しいベンチマークとして収集し,X線からのCT再構成の臨床的意義と性能を検証した。
論文 参考訳(メタデータ) (2024-07-18T14:20:04Z) - 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images via Vessel Probability Guided Attenuation Learning [79.60829508459753]
現在の商用デジタルサブトラクション・アンジオグラフィー(DSA)システムは通常、再構築を行うために数百のスキャンビューを要求する。
スパース・ビューDSA画像のダイナミックな血流と不十分な入力は,3次元血管再建作業において重要な課題である。
本稿では,時間に依存しない容器確率場を用いてこの問題を効果的に解くことを提案する。
論文 参考訳(メタデータ) (2024-05-17T11:23:33Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos [79.50191812646125]
内視鏡的シーンの再構築は、外科手術後の分析から教育訓練まで、様々な医療応用にとって重要な要素である。
変形組織の非常にダイナミックな環境下での移動内視鏡の挑戦的なセットアップに着目する。
複数重重なり合う4次元ニューラルラジアンスフィールド(NeRF)への暗黙的なシーン分離と、再構成とカメラのスクラッチからのポーズを協調的に最適化するプログレッシブ最適化手法を提案する。
これにより、使いやすさが向上し、5000フレーム以上の手術ビデオの処理に間に合うように復元能力を拡張できる。
論文 参考訳(メタデータ) (2024-03-18T19:13:02Z) - Iterative Learning for Joint Image Denoising and Motion Artifact
Correction of 3D Brain MRI [11.806804196128953]
本稿では, 動きアーチファクトを用いたノイズの多いMRIの処理を反復学習により行うJDAC(Joint Image Denoising and Motion Artifact Correction)フレームワークを提案する。
まず,新しい雑音レベル推定手法を設計し,推定雑音分散に基づく特徴正規化条件付きU-Netバックボーンによる雑音を適応的に低減する。
アンチアーティファクトモデルは、運動補正プロセス中に脳解剖の整合性を維持するために設計された、新しい勾配に基づく損失関数を組み込んだ、運動アーティファクトの除去に別のU-Netを使用している。
論文 参考訳(メタデータ) (2024-03-13T01:18:55Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Robust Implementation of Foreground Extraction and Vessel Segmentation
for X-ray Coronary Angiography Image Sequence [4.653742319057035]
X-ray coronary angiography (XCA) 画像からの造影血管の抽出は臨床的に重要である。
テンソルロバスト主成分分析(TRPCA)に基づく容器層抽出法を提案する。
不均質なコントラスト分布を有する容器画像に対しては,2段階成長(TSRG)法を用いて血管拡張とセグメンテーションを行う。
論文 参考訳(メタデータ) (2022-09-15T12:07:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。