論文の概要: Intelligent Perception System for Vehicle-Road Cooperation
- arxiv url: http://arxiv.org/abs/2208.14052v1
- Date: Tue, 30 Aug 2022 08:10:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-31 13:18:35.453748
- Title: Intelligent Perception System for Vehicle-Road Cooperation
- Title(参考訳): 車線協調のための知的知覚システム
- Authors: Songbin Chen
- Abstract要約: 自動車と道路の協調自動運転技術は、車両の認識範囲を広げ、視覚障害領域を補完し、知覚精度を向上させることができる。
このプロジェクトでは主にライダーを用いて、車両と道路機器データの共有と組み合わせを実現し、動的目標の検出と追跡を実現するためにデータ融合スキームを開発する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of autonomous driving, the improvement of autonomous
driving technology for individual vehicles has reached the bottleneck. The
advancement of vehicle-road cooperation autonomous driving technology can
expand the vehicle's perception range, supplement the perception blind area and
improve the perception accuracy, to promote the development of autonomous
driving technology and achieve vehicle-road integration. This project mainly
uses lidar to develop data fusion schemes to realize the sharing and
combination of vehicle and road equipment data and achieve the detection and
tracking of dynamic targets. At the same time, some test scenarios for the
vehicle-road cooperative system were designed and used to test our vehicle-road
cooperative awareness system, which proved the advantages of vehicle-road
cooperative autonomous driving over single-vehicle autonomous driving.
- Abstract(参考訳): 自動運転車の開発により、個々の車両の自動運転技術の改善がボトルネックになってきた。
自動車と道路の協調自動運転技術の進歩は、車両の認識範囲を拡大し、視覚障害領域を補完し、認識精度を向上し、自動運転技術の開発を促進し、車両と道路の統合を実現する。
このプロジェクトでは主にライダーを用いて、車両と道路機器データの共有と組み合わせを実現し、動的目標の検出と追跡を実現するためにデータ融合方式を開発する。
同時に、車道協調システムのためのいくつかのテストシナリオが設計され、車道協調認識システムをテストするために使用され、単車運転よりも車道協調運転の利点が証明された。
関連論文リスト
- A Computer Vision Approach for Autonomous Cars to Drive Safe at Construction Zone [0.0]
自律運転システム(ADS)を搭載した車は、適応クルーズ制御、衝突警報、自動駐車など、様々な最先端機能を備えている。
本稿では,多様なドリフト条件下で構築ゾーンや機能で動作可能なコンピュータビジョン技術を利用した,革新的で高精度な道路障害物検出モデルを提案する。
論文 参考訳(メタデータ) (2024-09-24T07:11:00Z) - Scalable Decentralized Cooperative Platoon using Multi-Agent Deep
Reinforcement Learning [2.5499055723658097]
本稿では,交通流と安全を向上する車両小隊方式を提案する。
Unity 3Dゲームエンジンで深層強化学習を用いて開発されている。
提案した小隊モデルは、スケーラビリティ、分散化、ポジティブな協力の促進に重点を置いている。
論文 参考訳(メタデータ) (2023-12-11T22:04:38Z) - Driving into the Future: Multiview Visual Forecasting and Planning with
World Model for Autonomous Driving [56.381918362410175]
Drive-WMは、既存のエンド・ツー・エンドの計画モデルと互換性のある世界初のドライビングワールドモデルである。
ドライビングシーンで高忠実度マルチビュー映像を生成する。
論文 参考訳(メタデータ) (2023-11-29T18:59:47Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - Vehicle-road Cooperative Simulation and 3D Visualization System [0.0]
自動車と道路のコラボレーション技術は、その限界を克服し、交通の安全と効率を改善することができる。
信頼性と信頼性を確保するためには厳格なテストと検証方法が必要である。
論文 参考訳(メタデータ) (2022-07-14T04:53:54Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - Collaborative Driving: Learning- Aided Joint Topology Formulation and
Beamforming [24.54541437306899]
mmWave/THz帯における運転トポロジと車両ネットワークの定式化を共同で制御する新しいフレームワークである協調自律運転を構想する。
Swarmインテリジェンスシステムとして、コラボレーティブな運転方式は、単一車両インテリジェンスに基づく既存の自律運転パターンを越えている。
我々は、mmWave/THz-based vehicle-to-vehicle (V2V) 通信において、2つの有望なアプローチを示す。
論文 参考訳(メタデータ) (2022-03-18T12:50:35Z) - Human-Vehicle Cooperative Visual Perception for Shared Autonomous
Driving [9.537146822132904]
本稿では、共有自動運転の視覚知覚能力を高めるために、人車協調視覚認識法を提案する。
移動学習に基づいて、物体検出のmAPは75.52%に達し、視覚融合の基礎となる。
本研究は、実世界の複雑な交通紛争シナリオにおける共有自動運転と実験のための協調的視覚知覚ソリューションの先駆者である。
論文 参考訳(メタデータ) (2021-12-17T03:17:05Z) - A Software Architecture for Autonomous Vehicles: Team LRM-B Entry in the
First CARLA Autonomous Driving Challenge [49.976633450740145]
本稿では,シミュレーション都市環境における自律走行車両のナビゲーション設計について述べる。
我々のアーキテクチャは、CARLA Autonomous Driving Challengeの要件を満たすために作られました。
論文 参考訳(メタデータ) (2020-10-23T18:07:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。