Fundamental decoherence from quantum spacetime
- URL: http://arxiv.org/abs/2208.14119v2
- Date: Thu, 26 Jan 2023 18:27:53 GMT
- Title: Fundamental decoherence from quantum spacetime
- Authors: Michele Arzano, Vittorio D'Esposito, Giulia Gubitosi
- Abstract summary: We show that quantum properties of spacetime, encoded by noncommutativity at the Planck scale, lead to a generalized time evolution of quantum systems.
A decoherence mechanism is obtained in the form of a Lindblad-like time evolution for the density operator.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that quantum properties of spacetime, encoded by noncommutativity at
the Planck scale, lead to a generalized time evolution of quantum systems in
which pure states can evolve into mixed states. Specifically, a decoherence
mechanism is obtained in the form of a Lindblad-like time evolution for the
density operator when the action of time translations generator is deformed by
the effects of spacetime noncommutativity. The decoherence time for the
evolution of a free particle is used to show that the Planck mass is the
maximum allowed mass for elementary quantum systems.
Related papers
- Hilbert-Space Ergodicity in Driven Quantum Systems: Obstructions and
Designs [0.0]
We study a notion of quantum ergodicity for closed systems with time-dependent Hamiltonians.
We show that statistical pseudo-randomness can already be achieved by a quantum system driven with a single frequency.
arXiv Detail & Related papers (2024-02-09T19:00:00Z) - Quantum Uncertainty as an Intrinsic Clock [0.0]
In quantum mechanics, a classical particle is raised to a wave-function, thereby acquiring many more degrees of freedom.
We show that the Ermakov-Lewis invariant for the classical evolution in a time-dependent harmonic potential is actually the quantum uncertainty of a Gaussian wave-packet.
This naturally extends the classical Ermakov-Lewis invariant to a constant of motion for quantum systems following Schrodinger equation.
arXiv Detail & Related papers (2022-12-19T13:32:55Z) - Quantum superpositions of Minkowski spacetime [0.0]
"Spacetime superpositions" are quantum superpositions of different spacetimes not related by a global coordinate transformation.
We consider the quantum-gravitational effects produced by superpositions of periodically identified Minkowski spacetime.
We show that the detector's response exhibits discontinuous resonances at rational ratios of the superposed periodic length scale.
arXiv Detail & Related papers (2022-08-25T13:31:05Z) - Quantum conformal symmetries for spacetimes in superposition [0.0]
We build an explicit quantum operator that can map states describing a quantum field on a superposition of spacetimes to states representing a quantum field with a superposition of masses on a Minkowski background.
It can be used to import the phenomenon of particle production in curved spacetime to its conformally equivalent counterpart, thus revealing new features in modified Minkowski spacetime.
arXiv Detail & Related papers (2022-06-30T18:00:02Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Time and Evolution in Quantum and Classical Cosmology [68.8204255655161]
We show that it is neither necessary nor sufficient for the Poisson bracket between the time variable and the super-Hamiltonian to be equal to unity in all of the phase space.
We also discuss the question of switching between different internal times as well as the Montevideo interpretation of quantum theory.
arXiv Detail & Related papers (2021-07-02T09:17:55Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Feynman Propagator for Interacting Electrons in the Quantum Fokker
Theory [62.997667081978825]
modification consists in adding to the Fokker action its variation generated by the infinitesimal shifts of the proper time parameters.
As a result, the proper time parameters become observable at the quantum level.
arXiv Detail & Related papers (2020-04-19T10:42:58Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.