Synthehicle: Multi-Vehicle Multi-Camera Tracking in Virtual Cities
- URL: http://arxiv.org/abs/2208.14167v1
- Date: Tue, 30 Aug 2022 11:36:07 GMT
- Title: Synthehicle: Multi-Vehicle Multi-Camera Tracking in Virtual Cities
- Authors: Fabian Herzog, Junpeng Chen, Torben Teepe, Johannes Gilg, Stefan
H\"ormann, Gerhard Rigoll
- Abstract summary: We present a massive synthetic dataset for multiple vehicle tracking and segmentation in multiple overlapping and non-overlapping camera views.
The dataset consists of 17 hours of labeled video material, recorded from 340 cameras in 64 diverse day, rain, dawn, and night scenes.
- Score: 4.4855664250147465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smart City applications such as intelligent traffic routing or accident
prevention rely on computer vision methods for exact vehicle localization and
tracking. Due to the scarcity of accurately labeled data, detecting and
tracking vehicles in 3D from multiple cameras proves challenging to explore. We
present a massive synthetic dataset for multiple vehicle tracking and
segmentation in multiple overlapping and non-overlapping camera views. Unlike
existing datasets, which only provide tracking ground truth for 2D bounding
boxes, our dataset additionally contains perfect labels for 3D bounding boxes
in camera- and world coordinates, depth estimation, and instance, semantic and
panoptic segmentation. The dataset consists of 17 hours of labeled video
material, recorded from 340 cameras in 64 diverse day, rain, dawn, and night
scenes, making it the most extensive dataset for multi-target multi-camera
tracking so far. We provide baselines for detection, vehicle re-identification,
and single- and multi-camera tracking. Code and data are publicly available.
Related papers
- MTMMC: A Large-Scale Real-World Multi-Modal Camera Tracking Benchmark [63.878793340338035]
Multi-target multi-camera tracking is a crucial task that involves identifying and tracking individuals over time using video streams from multiple cameras.
Existing datasets for this task are either synthetically generated or artificially constructed within a controlled camera network setting.
We present MTMMC, a real-world, large-scale dataset that includes long video sequences captured by 16 multi-modal cameras in two different environments.
arXiv Detail & Related papers (2024-03-29T15:08:37Z) - The Interstate-24 3D Dataset: a new benchmark for 3D multi-camera
vehicle tracking [4.799822253865053]
This work presents a novel video dataset recorded from overlapping highway traffic cameras along an urban interstate, enabling multi-camera 3D object tracking in a traffic monitoring context.
Data is released from 3 scenes containing video from at least 16 cameras each, totaling 57 minutes in length.
877,000 3D bounding boxes and corresponding object tracklets are fully and accurately annotated for each camera field of view and are combined into a spatially and temporally continuous set of vehicle trajectories for each scene.
arXiv Detail & Related papers (2023-08-28T18:43:33Z) - SUPS: A Simulated Underground Parking Scenario Dataset for Autonomous
Driving [41.221988979184665]
SUPS is a simulated dataset for underground automatic parking.
It supports multiple tasks with multiple sensors and multiple semantic labels aligned with successive images.
We also evaluate the state-of-the-art SLAM algorithms and perception models on our dataset.
arXiv Detail & Related papers (2023-02-25T02:59:12Z) - DIVOTrack: A Novel Dataset and Baseline Method for Cross-View
Multi-Object Tracking in DIVerse Open Scenes [74.64897845999677]
We introduce a new cross-view multi-object tracking dataset for DIVerse Open scenes with dense tracking pedestrians.
Our DIVOTrack has fifteen distinct scenarios and 953 cross-view tracks, surpassing all cross-view multi-object tracking datasets currently available.
Furthermore, we provide a novel baseline cross-view tracking method with a unified joint detection and cross-view tracking framework named CrossMOT.
arXiv Detail & Related papers (2023-02-15T14:10:42Z) - CXTrack: Improving 3D Point Cloud Tracking with Contextual Information [59.55870742072618]
3D single object tracking plays an essential role in many applications, such as autonomous driving.
We propose CXTrack, a novel transformer-based network for 3D object tracking.
We show that CXTrack achieves state-of-the-art tracking performance while running at 29 FPS.
arXiv Detail & Related papers (2022-11-12T11:29:01Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
We propose a real-time city-scale multi-camera vehicle tracking system that handles real-world, low-resolution CCTV instead of idealized and curated video streams.
Our method is ranked among the top five performers on the public leaderboard.
arXiv Detail & Related papers (2022-04-15T12:47:01Z) - Rope3D: TheRoadside Perception Dataset for Autonomous Driving and
Monocular 3D Object Detection Task [48.555440807415664]
We present the first high-diversity challenging Roadside Perception 3D dataset- Rope3D from a novel view.
The dataset consists of 50k images and over 1.5M 3D objects in various scenes.
We propose to leverage the geometry constraint to solve the inherent ambiguities caused by various sensors, viewpoints.
arXiv Detail & Related papers (2022-03-25T12:13:23Z) - LMGP: Lifted Multicut Meets Geometry Projections for Multi-Camera
Multi-Object Tracking [42.87953709286856]
Multi-Camera Multi-Object Tracking is currently drawing attention in the computer vision field due to its superior performance in real-world applications.
We propose a mathematically elegant multi-camera multiple object tracking approach based on a spatial-temporal lifted multicut formulation.
arXiv Detail & Related papers (2021-11-23T14:09:47Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - Probabilistic 3D Multi-Modal, Multi-Object Tracking for Autonomous
Driving [22.693895321632507]
We propose a probabilistic, multi-modal, multi-object tracking system consisting of different trainable modules.
We show that our method outperforms current state-of-the-art on the NuScenes Tracking dataset.
arXiv Detail & Related papers (2020-12-26T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.