The Interstate-24 3D Dataset: a new benchmark for 3D multi-camera
vehicle tracking
- URL: http://arxiv.org/abs/2308.14833v1
- Date: Mon, 28 Aug 2023 18:43:33 GMT
- Title: The Interstate-24 3D Dataset: a new benchmark for 3D multi-camera
vehicle tracking
- Authors: Derek Gloudemans, Yanbing Wang, Gracie Gumm, William Barbour, Daniel
B. Work
- Abstract summary: This work presents a novel video dataset recorded from overlapping highway traffic cameras along an urban interstate, enabling multi-camera 3D object tracking in a traffic monitoring context.
Data is released from 3 scenes containing video from at least 16 cameras each, totaling 57 minutes in length.
877,000 3D bounding boxes and corresponding object tracklets are fully and accurately annotated for each camera field of view and are combined into a spatially and temporally continuous set of vehicle trajectories for each scene.
- Score: 4.799822253865053
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a novel video dataset recorded from overlapping highway
traffic cameras along an urban interstate, enabling multi-camera 3D object
tracking in a traffic monitoring context. Data is released from 3 scenes
containing video from at least 16 cameras each, totaling 57 minutes in length.
877,000 3D bounding boxes and corresponding object tracklets are fully and
accurately annotated for each camera field of view and are combined into a
spatially and temporally continuous set of vehicle trajectories for each scene.
Lastly, existing algorithms are combined to benchmark a number of 3D
multi-camera tracking pipelines on the dataset, with results indicating that
the dataset is challenging due to the difficulty of matching objects traveling
at high speeds across cameras and heavy object occlusion, potentially for
hundreds of frames, during congested traffic. This work aims to enable the
development of accurate and automatic vehicle trajectory extraction algorithms,
which will play a vital role in understanding impacts of autonomous vehicle
technologies on the safety and efficiency of traffic.
Related papers
- RoboSense: Large-scale Dataset and Benchmark for Multi-sensor Low-speed Autonomous Driving [62.5830455357187]
In this paper, we construct a multimodal data collection platform based on 3 main types of sensors (Camera, LiDAR and Fisheye)
A large-scale multi-sensor dataset is built, named RoboSense, to facilitate near-field scene understanding.
RoboSense contains more than 133K synchronized data with 1.4M 3D bounding box and IDs in the full $360circ$ view, forming 216K trajectories across 7.6K temporal sequences.
arXiv Detail & Related papers (2024-08-28T03:17:40Z) - MTMMC: A Large-Scale Real-World Multi-Modal Camera Tracking Benchmark [63.878793340338035]
Multi-target multi-camera tracking is a crucial task that involves identifying and tracking individuals over time using video streams from multiple cameras.
Existing datasets for this task are either synthetically generated or artificially constructed within a controlled camera network setting.
We present MTMMC, a real-world, large-scale dataset that includes long video sequences captured by 16 multi-modal cameras in two different environments.
arXiv Detail & Related papers (2024-03-29T15:08:37Z) - Application of 2D Homography for High Resolution Traffic Data Collection
using CCTV Cameras [9.946460710450319]
This study implements a three-stage video analytics framework for extracting high-resolution traffic data from CCTV cameras.
The key components of the framework include object recognition, perspective transformation, and vehicle trajectory reconstruction.
The results of the study showed about +/- 4.5% error rate for directional traffic counts, less than 10% MSE for speed bias between camera estimates.
arXiv Detail & Related papers (2024-01-14T07:33:14Z) - So you think you can track? [37.25914081637133]
This work introduces a multi-camera tracking dataset consisting of 234 hours of video data recorded concurrently from 234 HD cameras covering a 4.2 mile stretch of 8-10 lane interstate highway near Nashville, TN.
The video is recorded during a period of high traffic density with 500+ objects typically visible within the scene and typical object longevities of 3-15 minutes.
GPS trajectories from 270 vehicle passes through the scene are manually corrected in the video data to provide a set of ground-truth trajectories for recall-oriented tracking metrics.
arXiv Detail & Related papers (2023-09-13T19:18:18Z) - Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting [64.7364925689825]
Argoverse 2 (AV2) is a collection of three datasets for perception and forecasting research in the self-driving domain.
The Lidar dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose.
The Motion Forecasting dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene.
arXiv Detail & Related papers (2023-01-02T00:36:22Z) - Synthehicle: Multi-Vehicle Multi-Camera Tracking in Virtual Cities [4.4855664250147465]
We present a massive synthetic dataset for multiple vehicle tracking and segmentation in multiple overlapping and non-overlapping camera views.
The dataset consists of 17 hours of labeled video material, recorded from 340 cameras in 64 diverse day, rain, dawn, and night scenes.
arXiv Detail & Related papers (2022-08-30T11:36:07Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
We propose a real-time city-scale multi-camera vehicle tracking system that handles real-world, low-resolution CCTV instead of idealized and curated video streams.
Our method is ranked among the top five performers on the public leaderboard.
arXiv Detail & Related papers (2022-04-15T12:47:01Z) - Rope3D: TheRoadside Perception Dataset for Autonomous Driving and
Monocular 3D Object Detection Task [48.555440807415664]
We present the first high-diversity challenging Roadside Perception 3D dataset- Rope3D from a novel view.
The dataset consists of 50k images and over 1.5M 3D objects in various scenes.
We propose to leverage the geometry constraint to solve the inherent ambiguities caused by various sensors, viewpoints.
arXiv Detail & Related papers (2022-03-25T12:13:23Z) - Weakly Supervised Training of Monocular 3D Object Detectors Using Wide
Baseline Multi-view Traffic Camera Data [19.63193201107591]
7DoF prediction of vehicles at an intersection is an important task for assessing potential conflicts between road users.
We develop an approach using a weakly supervised method of fine tuning 3D object detectors for traffic observation cameras.
Our method achieves vehicle 7DoF pose prediction accuracy on our dataset comparable to the top performing monocular 3D object detectors on autonomous vehicle datasets.
arXiv Detail & Related papers (2021-10-21T08:26:48Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.